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Abstract

Null models for randomly generating trees are useful for detecting and un-

derstanding evolutionary processes in real phylogenetic trees. The two most

commonly used null models are the Yule-Harding-Kingman (YHK) and Pro-

portional to Distinguishable Arrangements (PDA) models. We investigate

the trees generated under these two models through the lens of subtrees,

which are small recurring structures inside trees. Through a recursive ap-

proach, we obtain exact results for the joint and marginal statistical distri-

butions of subtrees in trees generated under both models, in both rooted and

unrooted trees, and for subtrees with up to four leaves (cherries, pitchforks,

4-caterpillars, and crabs). Furthermore, we present more limited marginal

results for subtrees with arbitrarily many leaves.
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1 Introduction

Trees are an important subclass of graphs, which can be randomly generated.

In this thesis, we seek to study one property of random trees, that is, if you

randomly generate a tree, statistically how many of what subtrees can you

expect to find in it? To this end, in this chapter we present some general

background context for this problem, and summarise existing research in

the field.

Trees have been used for applications as diverse as efficient data com-

pression [Huffman, 1952, Van Leeuwen, 1976], parsing grammar [Carnie,

2021], machine learning [Suthaharan and Suthaharan, 2016], business and

economics [Magee, 1964, Gepp et al., 2010], organic chemistry [Balaban,

1985], robotics [Colledanchise and Ögren, 2018, Marzinotto et al., 2014] and

even video games [Nicolau et al., 2016].

Here, we focus on their use in modelling evolutionary histories. This

use can be traced back to Charles Darwin, see Figure 1.1 for an example.

This includes both phylogenetic trees (in which each leaf is a species) and

genealogical trees (in which each leaf is an individual in a population). See

Fig.1.2 for an example of a tree in which each leaf is a different COVID-19

sample.

Even if an evolutionary tree is constructed accurately, evolutionary forces

such as speciation, extinction, mutation, and natural selection can be diffi-

cult to isolate or infer. One way to accomplish this is through a null model,

which is neutral to these evolutionary forces. We can then compare real

empirically inferred trees against what would be statistically likely under a

null model to establish evidence for other forces.

Trees can be studied statistically using topological measures such as

9



Figure 1.1: The first known phylogenetic tree, from Charles Darwin’s note-
book [Van Wyhe, 2002].
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Figure 1.2: A phylogenetic tree showing the relationships between 775 dif-
ferent samples of COVID-19 taken in India [Kumar et al., 2021].
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Sackin’s index [Sackin, 1972, M. Coronado et al., 2020] (using the depth

of each leaf to estimate how balanced a tree is) or branch length (where

each edge in the tree is given a ”length”, usually representing timespan,

which is useful for considering mutation). In this thesis, however, we will

focus on trees’ topology, and more specifically on subtrees, which are smaller

topological structures arising within trees.

McKenzie and Steel [2000] found exact results for means and variances

of the numbers of cherries (subtrees with two leaves) in rooted trees under

the YHK and PDA models (Yule-Harding-Kingman and Proportional to

Distinguishable Arrangements; see Section 2.3), as well as making some

conjectures regarding corresponding results for unrooted trees, and giving

an example of how these could be applied to empirical phylogenetic trees.

These results were later extended to pitchforks and cherries [Wu and Choi,

2016] and then from there to unrooted trees [Choi et al., 2020].

Rosenberg [2006] considered the YHK model on random rooted trees. By

first considering the probability of generating a given genealogy, he was able

to compute the means and variances of the numbers of k-subtrees and k-

caterpillars generated. While these results are highly notable, unfortunately

the methods used do not generalise well to unrooted trees or trees generated

under other models, and require more steps than the recursive approaches

detailed in Chapters 3 onwards.

Ford [2006] introduced the alpha model, a random tree model general-

ising the YHK and PDA models, and found some limiting results for the

mean and variance of the number of cherries. This was extended further to

multifurcating trees with the alpha-gamma model by Chen et al. [2009].

The remainder of the thesis is organised as follows: in Chapter 2 we

obtain some preliminary results on small trees. In Chapter 3 we find the

means and variances of cherries and pitchforks in unrooted trees, and in

Chapter 4 we extend this to 4-subtrees, in both rooted and unrooted trees.

In Chapter 5 we obtain some results for general k-subtrees. Finally, in

Chapter 6 we discuss the results obtained and future avenues for research.

The appendix contains code used to verify the initial conditions in Section

2.6, and a summary of the results from Chapters 3 and 4.

12



2 Random Trees

In this chapter, we formally define the concepts and methods we will use

throughout the rest of this thesis, beginning with trees and subtrees. We

also present some exact results for small trees. While not significant on their

own, these will be required to prove results in chapters 3, 4, and 5.

2.1 Trees

A network is defined as a set of points (known as nodes or vertices), and a

set of pairs of points that are linked to one another (known as edges). A tree

is a particular type of network which is connected and acyclic: all vertices

can reach all other vertices via some sequence of edges, and the edges do not

form any closed loops; or, equivalently, there is exactly one possible path

between any two given vertices, following the edges.

The degree of a vertex is the number of edges attached to it. In a binary

tree, all vertices have degree one or three. A rooted tree has a particular

vertex of degree one designated as the root, and an unrooted tree does not.

A vertex that has degree one, and is not the root, is known as a leaf. Edges

attached to leaves are known as pendant edges, and all other edges are

known as internal edges. A tree is labelled if the leaves are in some way

distinguishable from one another; otherwise, it is unlabelled [Semple et al.,

2003][Deo, 2017].

In this text, unless explicitly stated otherwise, we consider only binary,

unlabelled trees, also known as tree shapes.
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Figure 2.1: Examples of small subtrees. Top left: a cherry. Top right: a
pitchfork. Bottom left: a 4-caterpillar. Bottom right: a crab.

2.2 Subtrees

A subtree is a single edge, and all other vertices and edges that would be

included if that edge were taken as the root of a rooted tree. This is some-

times referred to specifically as a pendant subtree [Allen, 1998]. Note that

subtrees are always rooted, even if the tree they are a part of is unrooted.

A cherry is a subtree comprising two pendant edges joined at a single

vertex, and the root edge above. A pitchfork is a subtree comprising a cherry

joined to another pendant edge, and the root edge above. Additionally, we

define a crab as two cherries joined at a single vertex, and the root above. A

k-subtree is any subtree containing k leaves, regardless of its topology, and

a k-caterpillar is a k-subtree in which every internal vertex is joined to a

pendant edge.

Let An, Bn, Cn, Dn be the random variables denoting the number of

pitchforks, cherries, 4-caterpillars, and crabs, respectively, in a randomly

generated tree of n leaves. Similarly, let Ck,n and Sk,n be the number of

k-caterpillars and k-subtrees, respectively. Finally, we adopt the convention

that for a random variable Xn denoting the number of a given subtree, let

14



X∗n and X◦n denote the rooted and unrooted cases, respectively.

2.3 Random Trees

We will focus on two methods of randomly generating trees: the Yule-

Harding-Kingman (YHK) model [Yule, 1925, Harding, 1971, Kingman, 1982],

and the Proportional to Distinguishable Arrangements (PDA) model [Al-

dous, 2001]. Other more general models for generating random trees exist,

such as the Ford alpha model [Ford, 2006] and beta splitting model [Aldous,

1996].

The YHK model was developed as a simple model for evolution and the

growth of real phylogenetic trees. The process can be understood as follows:

1. Begin with a given small tree (usually the unique tree with two leaves

in the rooted case, or with four leaves in the unrooted case).

2. Randomly choose a single edge from the pendant edge set. The edges

are sampled uniformly, so every pendant edge is equally likely to be

chosen.

3. “Split” the edge by inserting a node in the middle of it, connected to

a new pendant edge with a new leaf.

4. Repeat steps 2 and 3 until the tree has the desired number of leaves.

The splitting process can be understood intuitively as a speciation event

in the evolutionary history of a phylogenetic tree. Speciation can only occur

on currently extant lineages, hence why only pendant edges can be split.

The PDA model was developed as a null model, under which every unique

labelled tree has an equal probability of being generated. Its process can be

understood as being identical to the YHK process, except at step 2 the edge

is sampled from the entire edge set, not just the pendant edge set.

Despite the YHK model being much closer to the expected reality of how

phylogenetic trees are generated in nature, real life phylogenetic trees are

consistently more imbalanced than predicted by the YHK model [Aldous,
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Figure 2.2: An example of the result of splitting an edge in a rooted tree.
In this case, the third pendant edge from the right has been split. As a
result, the number of leaves has increased from six to seven, the number
of pitchforks has reduced from one to zero, the numbers of cherries has
increased from two to three, and the number of crabs has increased from
zero to one.

2001, Blum and François, 2006]. However, the PDA model is not a better

predictor for real phylogenetic trees [Jones, 2011].

To distinguish between the two models, we let Ey, Vy, Covy, and ρy

be the expectation, variance, covariance, and correlation coefficient respec-

tively under the YHK model, and Eu, Vu, Covu, and ρu be the expectation,

variance, covariance, and correlation coefficient respectively under the PDA

model.

2.4 Recursion

A recursion is a set of equations defining the behaviour of a function of a

discrete variable or variables. Typically they consist of:

1. One equation relating the value of the function at one point to the

value of the function at another point, for example f(n) = 2f(n− 1),

and

2. One equation giving the precise value of the function at a given fixed

point, for example f(0) = 1.

Recursions can be understood as a discrete analogue of differential equa-

tions. Similarly to differential equations, they can be solved to yield a closed
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form of the function described, for example f(n) = 2n is a solution to the

above equations.

There are many ways to solve recursions, but we will principally be using

the summation factor method, detailed in Graham et al. [1989], (eq. 2.9–

2.11)

2.5 Falling Factorials

We define the falling factorial as

nk =
k−1∏
i=0

(n− i) = n(n− 1)(n− 2) . . . (n− k + 1),

and the double falling factorial as

nk =
k−1∏
i=0

(n− 2i) = n(n− 2)(n− 4) . . . (n− 2k + 2).

We note the following identity (see Graham et al. [1989], equation 2.53)

∑
a≤k<b

km =
bm+1 − am+1

m+ 1
, m 6= −1. (2.1)

Furthermore, we note (ibid., equation 6.10)

kn =
n∑
i=0

{
n

i

}
ki, n ≥ 1 (2.2)

by which any monomial can be converted to a sum of falling factorials. Here{
n
i

}
denotes Stirling numbers of the second kind. As they are used frequently

17



throughout, the first few examples are given below:

k1 = k1,

k2 = k2 + k1,

k3 = k3 + 3k2 + k1,

k4 = k4 + 6k3 + 7k2 + k1,

k5 = k5 + 10k4 + 25k3 + 15k2 + k1,

k6 = k6 + 15k5 + 65k4 + 90k3 + 31k2 + k1.

2.6 Exact Probabilities and Expectations of Subtrees

In rooted trees, there is only one unique tree with three leaves, comprising

a pitchfork. Similarly, in unrooted trees, there is only one unique tree with

four leaves (comprising two cherries joined by a single edge) and one unique

tree with five leaves (comprising a cherry joined to a pitchfork).

Given the procedure for recursively growing trees described in Section

2.3, it is possible to calculate the exact probabilities of particular trees being

generated under the YHK or PDA models, in both rooted and unrooted trees

(See Figures 2.3, 2.4, 2.5, and 2.6).

From this, it is also possible to calculate the expectations of particular

subtrees. For example, consider Ey(A◦6B◦6). From Figure 2.5, there are two

unique unrooted trees with six leaves. The first, on the left, contains two

cherries and two pitchforks and has a probability of 4
5 . The second, on the

right, contains three cherries and zero pitchforks, and has a probability of
1
5 . We can then easily see that Ey(A◦6B◦6) = 16

5 .

As the number of trees to consider grows rapidly with the number of

leaves, it quickly becomes intractable to calculate probabilities or expecta-

tions by this method for larger trees, but it is useful for calculating initial

values for recursions, which we will use extensively in chapters 3 and 4.

We note that Ey(B◦4) = 2, Ey(B◦24 ) = 4, Eu(B◦4) = 2, and Eu(B◦24 ) =

4 all follow from the fact that the unique four-leaved unrooted tree has

two cherries. Most other initial conditions can be calculated directly from

18



Figures 2.3, 2.4, 2.5, and 2.6. The remainder can easily be calculated by

manually extending the same method to larger trees, or using the code in

Appendix 7.1.

For convenience, we list here all initial conditions used in the remainder

of the thesis. For rooted trees generated under the YHK model, from Figure

2.3 we have

Ey(C∗5 ) =
1

3

Ey(B∗7C∗7 ) =
8

9

Ey(A∗8C∗8 ) =
86

105

Ey(C∗29 ) =
26

35

Ey(D∗5) =
1

6

Ey(B∗7D∗7) =
61

90

Ey(A∗8D∗8) =
1

7

Ey(D∗29 ) =
47

140

Ey(C∗9D∗9) =
1

14
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Figure 2.3: The exact probabilities of small rooted trees being generated
under the YHK model. Numbers on arrows are the probability of a split in
the source tree resulting in the destination tree.
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Next, for rooted trees generated under the PDA model, from Fig.2.4 we

have

Eu(C∗4 ) =
4

5

Eu(B∗4C
∗
4 ) =

4

5

Eu(A∗4C
∗
4 ) =

4

5

Eu(C∗24 ) =
4

5

Eu(D∗4) =
1

5

Eu(B∗4D
∗
4) =

2

5

Eu(A∗4D
∗
4) = 0

Eu(D∗24 ) =
1

5

Eu(C∗4D
∗
4) = 0

21



Figure 2.4: The exact probabilities of small rooted trees being generated
under the PDA model. Numbers on arrows are the probability of a split in
the source tree resulting in the destination tree.
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Similarly, for unrooted trees generated under the YHK model, from Fig-

ure 2.5 we have

Ey(B◦4) = 2

Ey(B◦24 ) = 4

Ey(A◦6) =
8

5

Ey(A◦6B◦6) =
16

5

Ey(A◦26 ) =
16

5

Ey(C◦8 ) =
94

105

Ey(B◦9C◦9 ) =
467

210

Ey(A◦9C◦9 ) =
323

210

Ey(C◦29 ) =
241

210

Ey(D◦8) =
44

105

Ey(B◦9D◦9) =
311

210

Ey(A◦8D◦8) =
2

7

Ey(D◦29 ) =
67

140

Ey(C◦9D◦9) =
31

210

23



Figure 2.5: The exact probabilities of small unrooted trees being generated
under the YHK model. Numbers on arrows are the probability of a split in
the source tree resulting in the destination tree.

24



Finally, for unrooted trees generated under the PDA model, from Figure

2.6 we have

Eu(B◦4) = 2

Eu(B◦24 ) = 4

Eu(A◦6) =
12

7

Eu(A◦6B
◦
6) =

24

7

Eu(A◦26 ) =
24

7

Eu(C◦8 ) =
10

33

Eu(B◦8C
◦
8 ) =

8

3

Eu(A◦8C
◦
8 ) =

24

11

Eu(C◦28 ) =
72

33

Eu(D◦8) =
10

33

Eu(B◦8D
◦
8) =

32

33

Eu(A◦8D
◦
8) =

8

33

Eu(D◦28 ) =
12

33

Eu(C◦8D
◦
8) =

8

33
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Figure 2.6: The exact probabilities of small unrooted trees being generated
under the PDA model. Numbers on arrows are the probability of a split in
the source tree resulting in the destination tree.
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3 Moments of Unrooted Cherries and

Pitchforks

In this chapter, we consider the means, variances, and covariances of two-

leaved and three-leaved subtrees (cherries and pitchforks). Exact cherry and

pitchfork moments are already known for rooted trees under both the YHK

and PDA models [Wu and Choi, 2016]. We extend these results to unrooted

trees [Choi et al., 2020].

3.1 Moments of Unrooted Cherries and Pitchforks under

the YHK model

Theorem 3.1.1. For n ≥ 6, we have

Py(A◦n+1 = a,B◦n+1 = b) =
2a

n
Py(A◦n = a,B◦n = b)

+
a+ 1

n
Py(A◦n = a+ 1, B◦n = b− 1)

+
2(b− a+ 1)

n
Py(A◦n = a− 1, B◦n = b)

+
n− a− 2b+ 2

n
Py(A◦n = a,B◦n = b− 1).

Proof. We begin by observing that the four edge sets E1, E2, E3, E4 as de-

fined in Table 3.1 comprise a partition of the set of pendant edges in a tree

of n ≥ 6 leaves generated under the YHK model. If we let e be the edge

that is split to grow the tree from n to n + 1 leaves, then it follows that e

must be a member of exactly one of the edge sets E1, E2, E3, E4. Thus, we
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Figure 3.1: An illustration of the edge sets from Table 3.1. Edges in E1 are
labelled 1, edges in E2 are labelled 2, and so on.

have

Py(A◦n+1 = a,B◦n+1 = b) = Py(e ∈ E1)Py(A◦n = a,B◦n = b)

+ Py(e ∈ E2)Py(A◦n = a+ 1, B◦n = b− 1)

+ Py(e ∈ E3)Py(A◦n = a− 1, B◦n = b)

+ Py(e ∈ E4)Py(A◦n = a,B◦n = b− 1).

Theorem 3.1.1 then follows from the sizes of the edge sets and the fact that

any pendant edge is equally likely to be split.

Theorem 3.1.2. Let n ≥ 6, and let ϕ : Z×Z→ Z be an arbitrary function.

Then we have

Ey
(
ϕ(A◦n+1, B

◦
n+1)

)
=

2

n
Ey
(
A◦nϕ(A◦n, B

◦
n)
)

+
1

n
Ey
(
A◦nϕ(A◦n − 1, B◦n + 1)

)
+

2

n
Ey
(

(B◦n −A◦n)ϕ(A◦n + 1, B◦n)
)

+
1

n
Ey
(

(n−A◦n − 2Bn)ϕ(A◦n, B
◦
n + 1)

)
.
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Proof. We define the indicator function Ia,b : Z× Z→ {0, 1} as

Ia,b(x, y) =

1, if a = x and b = y,

0, otherwise.

Multiplying both sides of Theorem 3.1.1 by our arbitrary function ϕ, we

can rewrite it in the form

Ey
(
ϕ(A◦n+1, B

◦
n+1)Ia,b(A

◦
n+1, B

◦
n+1)

)
=

2

n
Ey
(
A◦nϕ(A◦n, B

◦
n)Ia,b(A

◦
n, B

◦
n)
)

+
1

n
Ey
(
A◦nϕ(A◦n − 1, B◦n + 1)Ia,b(A

◦
n − 1, B◦n + 1)

)
+

2

n
Ey
(

(B◦n −A◦n)ϕ(A◦n + 1, B◦n)Ia,b(A
◦
n + 1, B◦n)

)
+

1

n
Ey
(

(n−A◦n − 2Bn)ϕ(A◦n, B
◦
n + 1)Ia,b(A

◦
n, B

◦
n + 1)

)
.

If we then sum over all possible a and b we are left only with the values

for which the indicator function is equal to 1, completing the proof.

Note that Theorems 3.1.1 and 3.1.2 are identical to the corresponding

results for the rooted case (see Wu and Choi [2016], Theorems 1 and 2)

because the partitioning of the pendant edge set remains the same, and any

pendant edge is equally likely to be split for both rooted and unrooted trees.

However, the particular solutions to these equations for the unrooted cases

will differ due to the initial conditions being different.

Proposition 3.1.1. We have

Ey(B◦n) =
n

3
+

4

(n− 1)(n− 2)
, n ≥ 4;

Vy(B◦n) =
2n

45
− 4(n2 − 3n+ 14)

3(n− 1)2(n− 2)2
, n ≥ 5.

Proof. Letting ϕ(x, y) = y in Theorem 3.1.2, we obtain
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Ey(B◦n+1) =
2

n
Ey(A◦nB◦n) +

1

n
Ey(A◦nB◦n +A◦n) +

2

n
Ey(B◦2n −A◦nB◦n)

+
1

n
Ey(nB◦n + n−A◦nB◦n −A◦n − 2B◦2 − 2B◦n)

=
1

n
Ey
(

(n− 2)B◦n + n
)

=
n− 2

n
Ey(B◦n) + 1.

If we then multiply throughout by the summation factor n2 and let α(n) =

(n− 1)2Ey(B◦n), we obtain

α(n) = α(n− 1) + (n− 1)2.

The unique unrooted tree with four leaves contains two cherries, that

is, Ey(B◦4) = 2, and therefore α(4) = 12. We can then rearrange the above

equation to give

α(n) =

n∑
k=5

(
α(k)− α(k − 1)

)
+ α(4)

=

n∑
k=5

(k − 1)2 + 12

=
n3 − 43

3
+ 12

=
n3

3
+ 4,

where the third equality follows from equation (2.1). Dividing throughout

by (n− 1)2 we are left with the formula for Ey(B◦n).

For the variance, we first let ϕ(x, y) = y2 in Theorem 3.1.2, yielding

Ey(B◦2n+1) =
n− 4

n
Ey(B◦2n ) + 2

n− 1

n
E(B◦n) + 1

=
n− 4

n
Ey(B◦2n ) +

2n+ 1

3
+

8

n(n− 2)
.
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This time we multiply through by the summation factor n4. Letting β(n) =

(n− 1)4Ey(B◦2n ), we obtain

β(n) = β(n− 1) +
(2n− 1)(n− 1)4

3
+ 8(n− 2)(n− 4)

=
1

3

n∑
k=5

(2k − 1)(k − 1)4 + 8
n∑
k=5

(k − 2)(k − 4) + β(4).

Note again that the unique four leaved unrooted tree has two cherries, and

hence Ey(B◦24 ) = 4. We then have β(4) = 0, and using equation (2.2), we

can express the above as

=
(5n+ 2)n5

45
+

8(n− 1)3

3
− 4(n− 1)2 + 8.

Dividing through by our summation factor n4 we can then recover

Ey(B◦2n ) =
(5n+ 2)n

45
+

4(2n− 1)

3(n− 1)2
,

from which the variance easily follows. Though Theorem 3.1.2 is only valid

for n ≥ 6, we can in fact manually verify that our formula for the mean is

valid for n ≥ 4 and our formula for the variance is valid for n ≥ 5.

We remark that the proof for Ey(B◦n) has notable similarities to that of

the formula for the tetrahedral numbers (see, for instance, Baumann [2019]

section 3).

Theorem 3.1.3. We have

Ey(A◦n) =
n

6
+

4(2n− 3)

(n− 1)3
, n ≥ 6;

and

Covy(A
◦
n, B

◦
n) = − n

45
− 4(n3 − 6n2 + 35n− 42)

3(n− 1)3(n− 1)2
, n ≥ 6.

Furthermore,

Vy(A◦n) =
23n

420
− 16(2n− 3)2(

(n− 1)3
)2 , n ≥ 7.
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Proof. Letting ϕ(x, y) = x in theorem 3.1.2, we obtain

Ey(A◦n+1) =
1

n
Ey
(

(n− 3)A◦n + 2B◦n

)
=
n− 3

n
Ey(A◦n) +

2

3
+

8

n3
.

We can then multiply through by the summation factor n3 and define

γ(n) = (n− 1)3Ey(A◦n) to give

γ(n+ 1) = γ(n) +
2n3

3
+ 8.

Noting that Ey(A◦6) = 8
5 (see Section 2.6) and hence γ(6) = 192, we then

obtain the sum

γ(n) = γ(6) +
n−1∑
k=7

2k3

3
+ 8.

This can easily be solved to give the expectation above.

Next, taking ϕ(x, y) = xy in Theorem 3.1.2, we obtain

Ey(A◦n+1B
◦
n+1) =

n− 5

n
Ey(A◦nB◦n) +

n− 1

n
Ey(A◦n) +

2

n
Ey(B◦2n )

=
n− 5

n
Ey(A◦nB◦n) +

35n− 7

90
+

4(10n2 − 29n+ 15)

3n4
.

Taking the summation factor n5 and letting δ(n) = (n− 1)5Ey(A◦nB◦n), this

simplifies to

δ(n+ 1) = δ(n) +
35n− 7

90
n5 +

4

3
(n− 4)(10n2 − 29n+ 15).

Combined with the initial condition Ey(A◦6B◦6) = 16
5 and hence δ(6) = 384

(see Section 2.6), this can be solved by similar methods to give

Ey(A◦nB◦n) =
5n4 − 27n3 + 40n2 + 288n− 360

90(n− 2)2
,

from which the covariance follows.
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Finally, taking ϕ(x, y) = x2 in Theorem 3.1.2 gives us

Ey(A◦2n+1) =
n− 6

n
Ey(A◦n) +

4

n
Ey(A◦nB◦n)− 1

n
Ey(A◦n) +

2

n
Ey(B◦n)

=
n− 6

n
Ey(A◦n) +

20n5 − 83n4 − 2n3 + 1487n2 − 2862n+ 360

90n4

Using the summation factor n6 and initial condition Ey(A◦26 ) = 16
5 (see

Section 2.6), this can be solved to give

Ey(A◦2n ) =
35n5 − 141n4 − 29n3 + 3909n2 − 5454n

1260(n− 1)3
,

from which the variance follows.

3.2 Moments of Unrooted Cherries and Pitchforks under

the PDA model

Theorem 3.2.1. For n ≥ 6, we have

Pu(A◦n+1 = a,B◦n+1 = b) =
n+ 3a− b− 3

2n− 3
Pu(A◦n = a,B◦n = b)

+
a+ 1

2n− 3
Pu(A◦n = a+ 1, B◦n = b− 1)

+
3(b− a+ 1)

2n− 3
Pu(A◦n = a− 1, B◦n = b)

+
n− a− 2b+ 2

2n− 3
Pu(A◦n = a,B◦n = b− 1).

Proof. Similarly to the proof of Theorem 3.1.1, we begin by observing that

the four edge sets E1, E2, E3, E4 as defined in Table 3.1 comprise a partition

of the set of edges in a tree of n ≥ 6 leaves generated under the PDA model.

If we let e be the edge that is split to grow the tree from n to n+ 1 leaves,

then it follows that e must be a member of exactly one of the edge sets
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E1, E2, E3, E4. Thus, we have

Pu(A◦n+1 = a,B◦n+1 = b) = Pu(e ∈ E1)Pu(A◦n = a,B◦n = b)

+ Pu(e ∈ E2)Pu(A◦n = a+ 1, B◦n = b− 1)

+ Pu(e ∈ E3)Pu(A◦n = a− 1, B◦n = b)

+ Pu(e ∈ E4)Pu(A◦n = a,B◦n = b− 1).

Theorem 3.2.1 then follows from the sizes of the edge sets and the fact that

any edge is equally likely to be split.

Theorem 3.2.2. Let n ≥ 6, and let ϕ : Z×Z→ Z be an arbitrary function.

Then we have

Eu
(
ϕ(A◦n+1, B

◦
n+1)

)
=

1

2n− 3
Eu
(

(n+ 3A◦n −B◦n − 3)ϕ(A◦n, B
◦
n)
)

+
1

2n− 3
Eu
(
A◦nϕ(A◦n − 1, B◦n + 1)

)
+

3

2n− 3
Eu
(

(B◦n −A◦n)ϕ(A◦n + 1, B◦n)
)

+
1

2n− 3
Eu
(

(n−A◦n − 2Bn)ϕ(A◦n, B
◦
n + 1)

)
.

Proof. Using the same methodof proof as in Theorem 3.1.2, we multiply

both sides of Theorem 3.2.1 by our arbitrary function ϕ, then rearrange

in terms of the indicator function Ia,b. Summing over all possible a and b

completes the proof.

Theorem 3.2.3. For n ≥ 4, we have

Eu(B◦n) =
n2

2(2n− 5)
;

and

Vu(B◦n) =
n2(n− 4)2

2(2n− 5)(2n− 5)2
.
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Proof. Substituting ϕ(x, y) = y into Theorem 3.2.2 gives us

Eu(B◦n+1) =
2n− 5

2n− 3
Eu(B◦n) +

n

2n− 3
.

The unique four leaved unrooted tree has two cherries, giving us the initial

condition Eu(B◦4) = 2. Using this and multiplying through by the sum-

mation factor 2n − 3, we can easily solve the above recursion to give the

mean.

Similarly, substituting ϕ(x, y) = y2 into Theorem 3.2.2 gives us

Eu(B◦2n+1) =
2n− 7

2n− 3
Eu(B◦2n ) +

2n− 2

2n− 3
Eu(B◦n) +

n

2n− 3

=
2n− 7

2n− 3
Eu(B◦2n ) +

n(n− 1)2

(2n− 3)2
+

n

2n− 3
.

By the same argument as above, we have Eu(B◦24 ) = 4. Using this initial

condition and the summation factor (2n− 3)2 we can solve the recursion to

give

Eu(B◦2n ) =
n2(n2 − n− 8)

4(2n− 5)2
,

from which the variance follows.

Theorem 3.2.4. For n ≥ 6, we have

Eu(A◦n) =
n3

2(2n− 5)2
,

Covu(A◦n, B
◦
n) = − 3n3(n− 5)

2(2n− 5)(2n− 5)3
,

and

Vu(A◦n) =
3n3(4n4 − 76n3 + 527n2 − 1555n+ 1610)

4(2n− 5)2(2n− 5)4
.
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Proof. Substituting ϕ(x, y) = x into Theorem 3.2.2 gives us

Eu(A◦n+1) =
2n− 7

2n− 3
Eu(A◦n) +

3

2n− 3
Eu(B◦n)

=
2n− 7

2n− 3
Eu(A◦n) +

3n2

2(2n− 3)2
.

This recursion can be solved using the summation factor (2n−3)2 and initial

condition Eu(A◦6) = 12
7 (see Section 2.6) to give the mean above.

Next, substituting ϕ(x, y) = xy into Theorem 3.2.2 gives us

Eu(A◦n+1B
◦
n+1) =

2n− 9

2n− 3
Eu(A◦nB

◦
n) +

n− 1

2n− 3
Eu(A◦n) +

3n

2n− 3
Eu(B◦2n )

=
2n− 9

2n− 3
Eu(A◦nB

◦
n) +

n2(5n2 − 9n− 20)

4(2n− 3)3
,

which can be solved with the summation factor (2n−3)3 and initial condition

Eu(A◦6B
◦
6) = 24

7 (see Section 2.6) to give

Eu(A◦nB
◦
n) =

n5 − 6n4 + 5n3 + 12n2 − 12n

4(2n− 3)3
,

from which the covariance follows.

Finally, substituting ϕ(x, y) = x2 into Theorem 3.2.2 gives us

Eu(A◦2n+1) =
2n− 11

2n− 3
Eu(A◦2n ) +

6

2n− 3
Eu(A◦nB

◦
n)− 2

2n− 3
Eu(A◦n)

+
3

2n− 3
Eu(B◦n),

which can be solved with the summation factor (2n−3)4 and initial condition

Eu(A◦26 ) = 24
7 (see Section 2.6) to give

Eu(A◦2n ) =
n6 − 7n5 − 19n4 + 229n3 − 480n2 + 276n

4(2n− 3)4
,

from which the variance follows.
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4 Moments of 4-subtrees

In this chapter we extend the results in the previous chapter to subtrees with

up to four leaves. To this end, recall that An, Bn, Cn, Dn are the random

variables denoting the number of pitchforks, cherries, 4-caterpillars, and

crabs, respectively, in a randomly generated tree of n leaves.

4.1 Moments of 4-Subtrees Under the YHK Model

Theorem 4.1.1. For both rooted and unrooted trees under the YHK model,

we have

Py(An+1 = a,Bn+1 = b, Cn+1 = c,Dn+1 = d)

=
4(d+ 1)

n
Py(An = a− 1, Bn = b, Cn = c,Dn = d+ 1)

+
2c

n
Py(An = a,Bn = b, Cn = c,Dn = d)

+
c+ 1

n
Py(An = a+ 1, Bn = b− 1, Cn = c+ 1, Dn = d− 1)

+
c+ 1

n
Py(An = a,Bn = b− 1, Cn = c+ 1, Dn = d)

+
2(a− c+ 1)

n
Py(An = a,Bn = b, Cn = c− 1, Dn = d)

+
a− c+ 1

n
Py(An = a+ 1, Bn = b− 1, Cn = c,Dn = d− 1)

+
2(b− 2d− a+ 1)

n
Py(An = a− 1, Bn = b, Cn = c,Dn = d)

+
n− 2b− a− c+ 2

n
Py(An = a,Bn = b− 1, Cn = c,Dn = d).

Proof. Similarly to Theorems 3.1.1 and 3.2.1, we can partition the pendant
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Figure 4.1: An illustration of the edge sets from Table 4.1. Edges in E1 are
labelled 1, edges in E2 are labelled 2, and so on.

edge set into the edge sets given in Table 4.1. Theorem 4.1.1 then follows

from the sizes of each pendant edge set, combined with the fact that every

pendant edge is equally likely to be split.

Theorem 4.1.2. For both rooted and unrooted trees under the YHK model,
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we have

Ey
(
ϕ(An+1, Bn+1, Cn+1, Dn+1)

)
=

4

n
Ey
(
Dnϕ(An + 1, Bn, Cn, Dn − 1)

)
+

2

n
Ey
(
Cnϕ(An, Bn, Cn, Dn)

)
+

1

n
Ey
(
Cnϕ(An − 1, Bn + 1, Cn − 1, Dn + 1)

)
+

1

n
Ey
(
Cnϕ(An, Bn + 1, Cn − 1, Dn)

)
+

2

n
Ey
(
(An − Cn)ϕ(An, Bn, Cn + 1, Dn)

)
=

1

n
Ey
(
(An − Cn)ϕ(An − 1, Bn + 1, Cn, Dn + 1)

)
+

2

n
Ey
(
(Bn −An − 2Dn)ϕ(An + 1, Bn, Cn, Dn)

)
+

1

n
Ey
(
(n− 2Bn −An − Cn)ϕ(An, Bn + 1, Cn, Dn)

)
.

Proof. Using the same method as Theorems 3.1.2 and 3.2.2, we multiply

both sides of Theorem 4.1.1 by our arbitrary function ϕ, then rearrange

in terms of the indicator function Ia,b. Summing over all possible a and b

completes the proof.

4.1.1 In Rooted Trees

Theorem 4.1.3. We have

Ey(C∗n) =
n

15
, n ≥ 5;

Covy(B
∗
n, C

∗
n) = − n

35
, n ≥ 7;

Covy(A
∗
n, C

∗
n) =

17n

1260
, n ≥ 8;

and

Vy(C∗n) =
67n

1575
, n ≥ 9.
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Proof. Substituting ϕ(a, b, c, d) = c into Theorem 4.1.2 gives us

Ey(C∗n+1) =
n− 4

n
Ey(C∗n) +

2

n
Ey(A∗n)

=
n− 4

n
Ey(C∗n) +

1

3
,

which, combined with the summation factor n4 and initial condition Ey(C∗5 ) =
1
3 (see Section 2.6) gives us Ey(C∗n) = n

15 .

Next, substituting ϕ(a, b, c, d) = bc into Theorem 4.1.2 gives us

Ey(B∗n+1C
∗
n+1) =

n− 6

n
Ey(B∗nC∗n) +

n− 2

n
Ey(C∗n) +

2

n
Ey(A∗nB∗n)

=
n− 6

n
Ey(B∗nC∗n) +

8(n− 1)

45
.

Combined with the summation factor n6 and initial condition Ey(B∗7C∗7 ) = 8
9

(see Section 2.6) this gives us Ey(B∗nC∗n) = n2

45−
n
35 , from which the covariance

follows.

Substituting ϕ(a, b, c, d) = ac into Theorem 4.1.2 gives

Ey(A∗n+1C
∗
n+1) =

n− 7

n
Ey(A∗nC∗n) +

1

n
Ey(C∗n) +

2

n
Ey(A∗2n ) +

2

n
Ey(B∗nC∗n)

=
n− 7

n
Ey(A∗nC∗n) +

n

10
+

5

42
.

Combined with the summation factor n7 and initial condition Ey(A∗8C∗8 ) =
86
105 (see Section 2.6) this gives us Ey(A∗nC∗n) = n2

90 −
17n
1260 , from which the

covariance follows.

Finally, substituting ϕ(a, b, c, d) = c2 into Theorem 4.1.2 gives

Ey(C∗2n+1) =
n− 8

n
Ey(C∗2n ) +

4

n
Ey(A∗nC∗n) +

2

n
Ey(A∗n)

=
n− 8

n
Ey(C∗2n ) +

2n

45
+

122

315
.

Combined with the summation factor n8 and initial condition Ey(C∗29 ) =
26
35 (see Section 2.6) this gives us Ey(A∗nC∗n) = n2

225 −
67n
1575 , from which the

variance follows.
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Theorem 4.1.4. We have

Ey(D∗n) =
n

30
, n ≥ 5;

Covy(B
∗
n, D

∗
n) =

2n

105
, n ≥ 7;

Covy(A
∗
n, D

∗
n) = − 67n

2520
, n ≥ 8;

Vy(D∗n) =
43n

1575
, n ≥ 9;

and

Covy(C
∗
n, D

∗
n) = − 19n

1575
, n ≥ 9.

Proof. Substituting ϕ(a, b, c, d) = d into Theorem 4.1.2 gives us

Ey(D∗n+1) =
n− 4

n
Ey(D∗n) +

1

n
Ey(A∗n)

=
n− 4

n
Ey(D∗n) +

1

6

which, combined with the summation factor n4 and initial condition Ey(D∗5) =
1
6 (see Section 2.6) gives us Ey(C∗n) = n

30 .

Next, substituting ϕ(a, b, c, d) = bd into Theorem 4.1.2 gives us

Ey(B∗n+1D
∗
n+1) =

n− 6

n
Ey(B∗nD∗n) +

1

n
Ey(A∗nB∗n) +

1

n
(A∗n) + Ey(D∗n)

=
n− 6

n
Ey(B∗nC∗n) +

4n

45
+

13

90
.

Combined with the summation factor n6 and initial condition Ey(B∗7D∗7) =
61
90 (see Section 2.6) this gives us Ey(B∗nD∗n) = n2

90 + 2n
105 , from which the

covariance follows.
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Substituting ϕ(a, b, c, d) = ad into Theorem 4.1.2 gives

Ey(A∗n+1D
∗
n+1) =

n− 7

n
Ey(A∗nD∗n) +

2

n
Ey(B∗nD∗n)− 4

n
Ey(D∗n) +

1

n
Ey(A∗2n )

− 1

n
Ey(A∗n)

=
n− 7

n
Ey(A∗nD∗n) +

n

20
+

29

140
.

Combined with the summation factor n7 and initial condition Ey(A∗8D∗8) = 1
7

(see Section 2.6) this gives us Ey(A∗nD∗n) = n2

180 −
67n
2520 , from which the

covariance follows.

Substituting ϕ(a, b, c, d) = d2 into Theorem 4.1.2 gives

Ey(D∗2n+1) =
n− 8

n
Ey(D∗2n ) +

2

n
Ey(A∗nD∗n) +

4

n
Ey(D∗n) +

1

n
Ey(A∗n)

=
n− 8

n
Ey(C∗2n ) +

n

90
+

311

1260
.

Combined with the summation factor n8 and initial condition Ey(D∗29 ) = 47
140

(see Section 2.6) this gives us Ey(D∗2n ) = n2

900 + 43n
1575 , from which the variance

follows.

Finally, substituting ϕ(a, b, c, d) = cd into Theorem 4.1.2 gives

Ey(C∗n+1D
∗
n+1) =

n− 8

n
Ey(C∗nD∗n) +

1

n
Ey(A∗nC∗n) +

2

n
Ey(A∗nD∗n)− 1

n
Ey(C∗n)

=
n− 8

n
Ey(C∗nD∗n) +

n

45
− 67

630
.

Combined with the summation factor n8 and initial condition Ey(C∗9D∗9) =
1
14 (see Section 2.6) this gives us Ey(C∗nD∗n) = n2

450 −
19n
1575 , from which the

covariance follows.

Corollary 4.1.1. We have

ρy(B
∗
n, C

∗
n) = −9

√
4690

938
, n ≥ 7;

ρy(B
∗
n, D

∗
n) = −3

√
3010

301
, n ≥ 7;
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ρy(A
∗
n, C

∗
n) =

17
√

23115

9246
, n ≥ 8;

ρy(A
∗
n, D

∗
n) = −67

√
14835

11868
, n ≥ 8;

and

ρy(C
∗
n, D

∗
n) = − 19√

2881
, n ≥ 9.

Proof. These results follow easily from Theorems 4.1.3 and 4.1.4.

4.1.2 In Unrooted Trees

Theorem 4.1.5. We have

Ey(C◦n) =
n

15
+

8(n2 − 4n+ 6)

(n− 1)4
, n ≥ 8;

Covy(B
◦
n, C

◦
n) = − n

35
− ybc

45(n− 1)4(n− 1)2
, n ≥ 9

where ybc = 37n5 − 4n4 − 895n3 + 4606n2 − 10080n+ 10656;

Covy(A
◦
n, C

◦
n) =

17n

1260
+

4yac
15(n− 1)4(n− 1)3

, n ≥ 9

where yac = 4n5 − 31n4 − 130n3 + 1075n2 − 2574n+ 2016; and

Vy(C◦n) =
67n

1575
+

ycc

1575
(
(n− 1)4

)2 , n ≥ 9

where ycc = 7n11−80n10−77n9+7620n8−62799n7+239400n6−441631n5+

78980n4 + 1543892n3 − 4048320n2 + 5404608n− 3628800.

Proof. Exactly the same recursions and summation factors apply as in The-

orem 4.1.3, but different initial conditions (see Section 2.6).

Taking Ey(C◦8 ) = 94
105 gives us

Ey(C◦n) =
n

15
+

8(n2 − 4n+ 6)

(n− 1)4
.
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Similarly, Ey(B◦9C◦9 ) = 467
210 gives us

Ey(B◦nC◦n) =
7n6 − 79n5 + 335n4 + 259n2 − 4338n2 + 10368n− 7056

315(n− 1)4

from which the covariance follows. Next, Ey(A◦9C◦9 ) = 323
210 gives us

Ey(A◦nC◦n) =
14n6 − 123n5 + 320n4 + 2247n3 − 9586n2 + 12168n+ 8064

1260(n− 1)4
.

from which the covariance follows. Finally, Ey(C◦29 ) = 241
210 gives us

Ey(C◦2n ) =
7n6 − 3n5 − 425n4 + 3675n3 − 4022n2 − 11832n+ 35280

1575(n− 1)4

which leads to the variance, completing the proof.

Theorem 4.1.6. We have

Ey(D◦n) =
n

30
+

4n

(n− 1)3
, n ≥ 8;

Covy(B
◦
n, D

◦
n) =

2n

105
+

4(3n3 − 8n2 − 17n+ 2)

5(n− 1)3(n− 1)2
, n ≥ 9;

Covy(A
◦
n, D

◦
n) =

67n

2520
− yad

1260
(
(n− 1)3

)2 , n ≥ 9

where yad = 67n7−804n6+3886n5−5280n4−14789n3+88596n2−100908n+

9072;

Vy(D◦n) =
43n

1575
− ydd

5670
(
(n− 1)3

)2 , n ≥ 9

where ydd = 67n7 − 804n6 + 3886n5 − 26280n4 + 112723n3 − 101076n2 +

102204n; and
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Covy(C
◦
n, D

◦
n) = − 19n

1575
− ycd

11340(n− 1)4(n− 1)3
, n ≥ 9

where ycd = 151n8−2416n7 + 16006n6−32584n5−125801n4 + 1145672n3−
3011412n2 + 3534480n− 435456.

Proof. Exactly the same recursions and summation factors apply as in The-

orem 4.1.4, but different initial conditions (see Section 2.6).

Taking Ey(D◦8) = 44
105 gives us

Ey(D◦n) =
n

30
+

4n

(n− 1)3
.

Similarly, Ey(B◦9D◦9) = 311
210 gives us

Ey(B◦nD◦n) =
7n5 − 30n4 + 5n3 + 1014n2 + 1188n+ 504

630(n− 1)3

from which the covariance follows.

Next, Ey(A◦8D◦8) = 2
7 gives us

Ey(A◦nD◦n) =
14n5 − 151n4 + 556n3 + 1531n2 − 9342n+ 3024

2520(n− 1)3

from which the covariance follows.

Taking Ey(D◦29 ) = 67
140 gives us

Ey(D◦2n ) =
7n5 + 130n4 − 955n3 + 3530n2 + 17448n

6300(n− 1)3

from which the variance follows, and finally Ey(C◦9D◦9) = 31
210 gives us

Ey(C◦nD◦n) =
7n3 − 52n2 + 76n+ 1680

3150(n− 2)

from which the covariance follows.
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4.2 Moments of 4-Subtrees Under the PDA Model

4.2.1 In Rooted Trees

Theorem 4.2.1. For rooted trees under the PDA model, we have

Pu(A∗n+1 = a,B∗n+1 = b, C∗n+1 = c,D∗n+1 = d)

=
6d+ 6

2n− 1
Pu(A∗n = a− 1, B∗n = b, C∗n = c,D∗n = d+ 1)

+
n− 1 + 4c− a− b

2n− 1
Pu(A∗n = a,B∗n = b, C∗n = c,D∗n = d)

+
c+ 1

2n− 1
Pu(A∗n = a+ 1, B∗n = b− 1, C∗n = c+ 1, D∗n = d− 1)

+
c+ 1

2n− 1
Pu(A∗n = a,B∗n = b− 1, C∗n = c+ 1, D∗n = d)

+
4(a− c+ 1)

2n− 1
Pu(A∗n = a,B∗n = b, C∗n = c− 1, D∗n = d)

+
a− c+ 1

2n− 1
Pu(A∗n = a+ 1, B∗n = b− 1, C∗n = c,D∗n = d− 1)

+
3(b− a− 2d+ 1)

2n− 1
Pu(A∗n = a− 1, B∗n = b, C∗n = c,D∗n = d)

+
n− 2b− a− c+ 2

2n− 1
Pu(A∗n = a,B∗n = b− 1, C∗n = c,D∗n = d).

Proof. Similarly to Theorems 3.1.1, 3.2.1, and 4.1.1, we can partition the

edge set into the edge sets given in Table 4.1. Theorem 4.2.1 then follows

from the sizes of each edge set, combined with the fact that every edge is

equally likely to be split.
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Theorem 4.2.2. For rooted trees under the PDA model, we have

Eu
(
ϕ(A∗n+1, B

∗
n+1, C

∗
n+1, D

∗
n+1)

)
=

6

2n− 1
Eu
(
D∗nϕ(A∗n + 1, B∗n, C

∗
n, D

∗
n − 1)

)
+

1

2n− 1
Eu
(
(n− 1 + 4C∗n −A∗n −B∗n)ϕ(A∗n, B

∗
n, C

∗
n, D

∗
n)
)

+
1

2n− 1
Eu
(
C∗nϕ(A∗n − 1, B∗n + 1, C∗n − 1, D∗n + 1)

)
+

1

2n− 1
Eu
(
C∗nϕ(A∗n, B

∗
n + 1, C∗n − 1, D∗n)

)
+

4

2n− 1
Eu
(
(A∗n − C∗n)ϕ(A∗n, B

∗
n, C

∗
n + 1, D∗n)

)
+

1

2n− 1
Eu
(
(A∗n − C∗n)ϕ(A∗n − 1, B∗n + 1, C∗n, D

∗
n + 1)

)
+

3

2n− 1
Eu
(
(B∗n −A∗n − 2D∗n)ϕ(A∗n + 1, B∗n, C

∗
n, D

∗
n)
)

+
1

2n− 1
Eu
(
(n− 2B∗n −A∗n − C∗n)ϕ(A∗n, B

∗
n + 1, C∗n, D

∗
n)
)
.

Proof. Using the same method as Theorems 3.1.2, 3.2.2, and 4.1.2, we multi-

ply both sides of Theorem 4.2.1 by our arbitrary function ϕ, then rearrange

in terms of the indicator function Ia,b. Summing over all possible a and b

completes the proof.

Theorem 4.2.3. For n ≥ 4, we have

Eu(C∗n) =
n4

2(2n− 3)3
;

Covu(B∗n, C
∗
n) = − n4(n2 − 5n+ 3)

2(2n− 3)(2n− 3)4
;

Covu(A∗n, C
∗
n) =

n4(4n4 − 62n3 + 340n2 − 768n+ 585)

2(2n− 3)2(2n− 3)5
;

and

Vu(C∗n) =
3n4ucc

2(2n− 3)3(2n− 3)6
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where ucc = 12n6− 296n5 + 2937n4− 14934n3 + 40971n2− 56290n+ 30345.

Proof. For the initial conditions used in this proof, see Section 2.6. Substi-

tuting ϕ(a, b, c, d) = c into Theorem 4.2.2 gives us

Eu(C∗n+1) =
2n− 7

2n− 1
Eu(C∗n) +

4

2n− 1
Eu(A∗n)

=
2n− 7

2n− 1
Eu(C∗n) +

2n3

(2n− 1)3
.

Using the summation factor (2n− 1)3 and the initial condition Eu(C∗4 ) = 4
5

this can easily be solved to give Eu(C∗n) = n4

2(2n−3)3
.

Similarly, substituting ϕ(a, b, c, d) = bc into Theorem 4.2.2 gives us

Eu(B∗n+1C
∗
n+1) =

2n− 9

2n− 1
Eu(B∗nC

∗
n) +

n− 2

2n− 1
Eu(C∗n) +

4

2n− 1
Eu(A∗nB

∗
n)

=
2n− 9

2n− 1
Eu(B∗nC

∗
n) +

n3(3n2 − 11n+ 2)

2(2n− 1)4

which can be solved with the summation factor (2n − 1)4 and the initial

condition Eu(B∗4C
∗
4 ) = 4

5 to give

Eu(B∗nC
∗
n) =

n4(n2 − 5n+ 2)

4(2n− 3)4

from which the covariance follows.

Next, substituting ϕ(a, b, c, d) = ac into Theorem 4.2.2 gives us

Eu(A∗n+1C
∗
n+1) =

2n− 11

2n− 1
Eu(A∗nC

∗
n) +

1

2n− 1
Eu(C∗n) +

4

2n− 1
Eu(A∗2n )

+
3

2n− 1
Eu(B∗nC

∗
n)

=
2n− 11

2n− 1
Eu(A∗nC

∗
n) +

n3(7n3 − 36n2 − 47n+ 300)

4(2n− 1)5

Using the summation factor (2n − 1)5 and initial condition Eu(A∗4C
∗
4 ) = 4

5

this can be solved to give
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Eu(A∗nC
∗
n) =

n4(n3 − 7n2 − 6n+ 78)

4(2n− 3)5

from which the covariance follows.

Finally, substituting ϕ(a, b, c, d) = c2 into Theorem 4.2.2 gives us

Eu(C∗2n+1) =
2n− 13

2n− 1
Eu(C∗2n ) +

8

2n− 1
Eu(A∗nC

∗
n)− 2

2n− 1
Eu(C∗n)

+
4

2n− 1
Eu(A∗n)

=
2n− 13

2n− 1
Eu(C∗2n ) +

n3(2n4 − 8n3 − 134n2 + 929n− 1557)

(2n− 1)6
.

Using the summation factor (2n−1)6 and initial condition Eu(C∗24 ) = 4
5 this

can be solved to give

Eu(C∗2n ) =
n4(n4 − 6n3 − 85n2 + 798n− 1734)

4(2n− 3)6

from which the variance follows.

Theorem 4.2.4. For n ≥ 4, we have

Eu(D∗n) =
n4

8(2n− 3)3
;

Covu(B∗n, D
∗
n) =

n4(2n3 − 35n+ 48)

16(2n− 3)(2n− 3)4
;

Covu(A∗n, D
∗
n) = −3n4(2n4 − 27n3 + 126n2 − 236n+ 150)

4(2n− 3)2(2n− 3)5
;

Vu(D∗n) =
3n4udd

32(2n− 3)3(2n− 3)6

where udd = 76n6 − 1832n5 + 17737n4 − 87894n3 + 233827n2 − 314434n +

165480; and

52



Covu(C∗n, D
∗
n) = − n4ucd

8(2n− 3)3(2n− 3)6
,

where ucd = 28n6− 648n5 + 5989n4− 28158n3 + 70663n2− 89274n+ 44100.

Proof. For the initial conditions used in this proof, see Section 2.6. Substi-

tuting ϕ(a, b, c, d) = d into Theorem 4.2.2 gives us

Eu(D∗n+1) =
2n− 7

2n− 1
Eu(D∗n) +

1

2n− 1
Eu(A∗n)

=
2n− 7

2n− 1
Eu(D∗n) +

n3

2(2n− 1)3
.

Using the summation factor (2n− 1)3 and initial condition Eu(D∗4) = 1
5 this

can be solved to give Eu(D∗n) = n4

8(2n−3)3
.

Next, substituting ϕ(a, b, c, d) = bd into Theorem 4.2.2 gives us

Eu(B∗n+1D
∗
n+1) =

2n− 9

2n− 1
Eu(B∗nD

∗
n) +

n

2n− 1
Eu(D∗n) +

1

2n− 1
Eu(A∗n)

+
1

2n− 1
Eu(A∗nB

∗
n)

=
2n− 9

2n− 1
Eu(B∗nD

∗
n) +

n3(3n2 − n− 32)

8(2n− 1)4
.

This can be solved using the summation factor (2n−1)4 and initial condition

Eu(B∗4D
∗
4) = 2

5 to give

Eu(B∗nD
∗
n) =

n4(n2 − n− 16)

16(2n− 3)4

from which the covariance follows.

Substituting ϕ(a, b, c, d) = ad into Theorem 4.2.2 gives us

Eu(A∗n+1D
∗
n+1) =

2n− 11

2n− 1
Eu(A∗nD

∗
n)− 6

2n− 1
Eu(D∗n) +

1

2n− 1
Eu(A∗2n )

− 1

2n− 1
Eu(A∗n) +

3

2n− 1
Eu(B∗nD

∗
n)

=
2n− 11

2n− 1
Eu(A∗nD

∗
n) +

7n6

16(2n− 1)5
.
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This can be solved using the summation factor (2n−1)5 and initial condition

Eu(A∗4D
∗
4) = 0 to give

Eu(A∗nD
∗
n) =

n7

16(2n− 3)5
.

Now substituting ϕ(a, b, c, d) = d2 into Theorem 4.2.2 gives us

Eu(D∗2n+1) =
2n− 13

2n− 1
Eu(D∗2n ) +

2

2n− 1
Eu(A∗nD

∗
n) +

6

2n− 1
Eu(D∗n)

+
1

2n− 1
Eu(A∗n)

=
2n− 13

2n− 1
Eu(D∗2n ) +

n3(n4 + 38n3 − 625n2 + 2884n− 4194)

8(2n− 1)6
.

This can be solved using the summation factor (2n−1)6 and initial condition

Eu(D∗24 ) = 1
5 to give

Eu(D∗2n ) =
n4(n4 + 42n3 − 877n2 + 5106n− 9456)

64(2n− 3)6

from which the variance follows.

Finally, substituting ϕ(a, b, c, d) = cd into Theorem 4.2.2 gives

Eu(C∗n+1D
∗
n+1) =

2n− 13

2n− 1
Eu(C∗nD

∗
n) +

1

2n− 1
Eu(A∗nC

∗
n)

+
4

2n− 1
Eu(A∗nD

∗
n)− 1

2n− 1
Eu(C∗n)

=
2n− 13

2n− 1
Eu(C∗nD

∗
n) +

n7

2(2n− 1)6
.

This can be solved using the summation factor (2n−1)6 and initial condition

Eu(C∗4D
∗
4) = 0 to give

Eu(C∗nD
∗
n) =

n8

16(2n− 3)6

from which the covariance follows.
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4.2.2 In Unrooted Trees

Theorem 4.2.5. For unrooted trees under the PDA model, we have

Pu(A◦n+1 = a,B◦n+1 = b, C◦n+1 = c,D◦n+1 = d)

=
6d+ 6

2n− 3
Pu(A◦n = a− 1, B◦n = b, C◦n = c,D◦n = d+ 1)

+
n− 3 + 4c− a− b

2n− 3
Pu(A◦n = a,B◦n = b, C◦n = c,D◦n = d)

+
c+ 1

2n− 3
Pu(A◦n = a+ 1, B◦n = b− 1, C◦n = c+ 1, D◦n = d− 1)

+
c+ 1

2n− 3
Pu(A◦n = a,B◦n = b− 1, C◦n = c+ 1, D◦n = d)

+
4(a− c+ 1)

2n− 3
Pu(A◦n = a,B◦n = b, C◦n = c− 1, D◦n = d)

+
a− c+ 1

2n− 3
Pu(A◦n = a+ 1, B◦n = b− 1, C◦n = c,D◦n = d− 1)

+
3(b− a− 2d+ 1)

2n− 3
Pu(A◦n = a− 1, B◦n = b, C◦n = c,D◦n = d)

+
n− 2b− a− c+ 2

2n− 3
Pu(A◦n = a,B◦n = b− 1, C◦n = c,D◦n = d).

Proof. Similarly to Theorems 3.1.1, 3.2.1, 4.1.1, and 4.2.1, we can partition

the edge set into the edge sets given in Table 4.1. Theorem 4.2.5 then follows

from the sizes of each edge set, combined with the fact that every edge is

equally likely to be split.
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Theorem 4.2.6. For unrooted trees under the PDA model, we have

Eu
(
ϕ(A◦n+1, B

◦
n+1, C

◦
n+1, D

◦
n+1)

)
=

6

2n− 3
Eu
(
D◦nϕ(A◦n + 1, B◦n, C

◦
n, D

◦
n − 1)

)
+

1

2n− 3
Eu
(
(n− 3 + 4C◦n −A◦n −B◦n)ϕ(A◦n, B

◦
n, C

◦
n, D

◦
n)
)

+
1

2n− 3
Eu
(
C◦nϕ(A◦n − 1, B◦n + 1, C◦n − 1, D◦n + 1)

)
+

1

2n− 3
Eu
(
C◦nϕ(A◦n, B

◦
n + 1, C◦n − 1, D◦n)

)
+

4

2n− 3
Eu
(
(A◦n − C◦n)ϕ(A◦n, B

◦
n, C

◦
n + 1, D◦n)

)
+

1

2n− 3
Eu
(
(A◦n − C◦n)ϕ(A◦n − 1, B◦n + 1, C◦n, D

◦
n + 1)

)
+

3

2n− 3
Eu
(
(B◦n −A◦n − 2D◦n)ϕ(A◦n + 1, B◦n, C

◦
n, D

◦
n)
)

+
1

2n− 3
Eu
(
(n− 2B◦n −A◦n − C◦n)ϕ(A◦n, B

◦
n + 1, C◦n, D

◦
n)
)
.

Proof. Using the same method as Theorems 3.1.2, 3.2.2, 4.1.2, and 4.2.2,

we multiply both sides of Theorem 4.2.5 by our arbitrary function ϕ, then

rearrange in terms of the indicator function Ia,b. Summing over all possible

a and b completes the proof.

Theorem 4.2.7. For n ≥ 8 we have

Eu(C◦n) =
n4

2(2n− 5)3
;

Covu(B◦nC
◦
n) = − n4(n2 − 5n− 5)

2(2n− 5)(2n− 5)4
;

Covu(A◦nC
◦
n) =

n4(4n4 − 90n3 + 736n2 − 2520n+ 2905)

2(2n− 5)2(2n− 5)5
;

and

Vu(C◦n) =
3n4ucc

2(2n− 5)3(2n− 5)6
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where ucc = 12n6−384n5+5013n4−34006n3+125715n2−238730n+181125.

Proof. For the initial conditions used in this proof, see Section 2.6. Substi-

tuting ϕ(a, b, c, d) = c into Theorem 4.2.6 gives us

Eu(C◦n+1) =
2n− 9

2n− 3
Eu(C◦n) +

4

2n− 3
Eu(A◦n)

=
2n− 9

2n− 3
Eu(C◦n) +

2n3

(2n− 3)3
.

Using the summation factor (2n−3)3 and the initial condition Eu(C◦8 ) = 10
33

this can easily be solved to give Eu(C◦n) = n4

2(2n−5)3
.

Similarly, substituting ϕ(a, b, c, d) = bc into Theorem 4.2.6 gives us

Eu(B◦n+1C
◦
n+1) =

2n− 11

2n− 3
Eu(B◦nC

◦
n) +

n− 2

2n− 3
Eu(C◦n) +

4

2n− 3
Eu(A◦nB

◦
n)

=
2n− 11

2n− 3
Eu(B◦nC

◦
n) +

n3(3n2 − 11n− 6)

2(2n− 3)4

which can be solved with the summation factor (2n − 3)4 and the initial

condition Eu(B◦8C
◦
8 ) = 8

3 to give

Eu(B◦nC
◦
n) =

n4(n2 − 5n− 2)

4(2n− 5)4

from which the covariance follows. Next, substituting ϕ(a, b, c, d) = ac into

Theorem 4.2.6 gives us

Eu(A◦n+1C
◦
n+1) =

2n− 13

2n− 3
Eu(A◦nC

◦
n) +

1

2n− 3
Eu(C◦n) +

4

2n− 3
Eu(A◦2n )

+
3

2n− 3
Eu(B◦nC

◦
n)

=
2n− 13

2n− 3
Eu(A◦nC

◦
n) +

n3(n− 4)(7n2 − 8n)

4(2n− 3)5
.

Using the summation factor (2n− 3)5 and initial condition Eu(A◦8C
◦
8 ) = 24

11

this can be solved to give
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Eu(A◦nC
◦
n) =

n4(n3 − 7n2 − 22n+ 166)

4(2n− 5)5

from which the covariance follows.

Finally, substituting ϕ(a, b, c, d) = c2 into Theorem 4.2.6 gives us

Eu(C◦2n+1) =
2n− 15

2n− 3
Eu(C◦2n ) +

8

2n− 3
Eu(A◦nC

◦
n)− 2

2n− 3
Eu(C◦n)

+
4

2n− 3
Eu(A◦n)

=
2n− 15

2n− 3
Eu(C◦2n ) +

n3(2n4 − 8n3 − 206n2 + 1613n− 3141)

(2n− 3)6
.

Using the summation factor (2n − 3)6 and initial condition Eu(C◦28 ) = 72
33

this can be solved to give

Eu(C◦2n ) =
n4(n4 − 6n3 − 133n2 + 1374n− 3450)

4(2n− 5)6

from which the variance follows.

Theorem 4.2.8. For n ≥ 8, we have

Eu(D◦n) =
n4

8(2n− 5)3
;

Covu(B◦nD
◦
n) =

3n6

8(2n− 5)(2n− 5)4
;

Covu(A◦nD
◦
n) = −3n4(2n4 − 33n3 + 188n2 − 432n+ 350)

4(2n− 5)2(2n− 5)5
;

Vu(D◦n) =
3n4udd

32(2n− 5)3(2n− 5)6
,

where udd = 76n6− 2304n5 + 28453n4− 182806n3 + 642751n2− 1169090n+

856800; and
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Covu(C◦nD
◦
n) =

n4ucd

8(2n− 5)3(2n− 5)6
,

where ucd = 28n6−768n5+8401n4−46782n3+139891n2−214170n+132300.

Proof. For the initial conditions used in this proof, see Section 2.6. Substi-

tuting ϕ(a, b, c, d) = d into Theorem 4.2.6 gives us

Eu(D◦n+1) =
2n− 9

2n− 3
Eu(D◦n) +

1

2n− 3
Eu(A◦n)

=
2n− 9

2n− 3
Eu(D◦n) +

n3

2(2n− 3)3
.

Using the summation factor (2n−3)3 and initial condition Eu(D◦8) = 10
33 this

can be solved to give Eu(D◦n) = n4

8(2n−5)3
.

Next, substituting ϕ(a, b, c, d) = bd into Theorem 4.2.6 gives us

Eu(B◦n+1D
◦
n+1) =

2n− 11

2n− 3
Eu(B◦nD

◦
n) +

n

2n− 3
Eu(D◦n) +

1

2n− 3
Eu(A◦n)

+
1

2n− 3
Eu(A◦nB

◦
n)

=
2n− 11

2n− 3
Eu(B◦nD

◦
n) +

n3(3n2 − n− 48)

8(2n− 3)4
.

This can be solved using the summation factor (2n−3)4 and initial condition

Eu(B◦8D
◦
8) = 32

33 to give

Eu(B◦nD
◦
n) =

n4(n2 − n− 24)

16(2n− 5)4

from which the covariance follows.

Substituting ϕ(a, b, c, d) = ad into Theorem 4.2.6 gives us

Eu(A◦n+1D
◦
n+1) =

2n− 13

2n− 3
Eu(A◦nD

◦
n)− 6

2n− 3
Eu(D◦n) +

1

2n− 3
Eu(A◦2n )

− 1

2n− 3
Eu(A◦n) +

3

2n− 3
Eu(B◦nD

◦
n)

=
2n− 13

2n− 3
Eu(A◦nD

◦
n) +

7n6

16(2n− 3)5
.
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This can be solved using the summation factor (2n−3)5 and initial condition

Eu(A◦8D
◦
8) = 8

33 to give

Eu(A◦nD
◦
n) =

n7

16(2n− 5)5
.

Now substituting ϕ(a, b, c, d) = d2 into Theorem 4.2.6 gives us

Eu(D◦2n+1) =
2n− 15

2n− 3
Eu(D◦2n ) +

2

2n− 3
Eu(A◦nD

◦
n) +

6

2n− 3
Eu(D◦n)

+
1

2n− 3
Eu(A◦n)

=
2n− 15

2n− 3
Eu(D◦2n ) +

n3(n4 + 38n3 − 769n2 + 4252n− 7362)

8(2n− 3)6
.

This can be solved using the summation factor (2n−3)6 and initial condition

Eu(D◦28 ) = 12
33 to give

Eu(D◦2n ) =
n4(n4 + 42n3 − 1069n2 + 7410n− 16320)

64(2n− 5)6

from which the variance follows.

Finally, substituting ϕ(a, b, c, d) = cd into Theorem 4.2.6 gives

Eu(C◦n+1D
◦
n+1) =

2n− 15

2n− 3
Eu(C◦nD

◦
n) +

1

2n− 3
Eu(A◦nC

◦
n)

+
4

2n− 3
Eu(A◦nD

◦
n)− 1

2n− 3
Eu(C◦n)

=
2n− 15

2n− 3
Eu(C◦nD

◦
n) +

n7

2(2n− 3)6
.

This can be solved using the summation factor (2n−3)6 and initial condition

Eu(C◦8D
◦
8) = 8

33 to give

Eu(C◦nD
◦
n) =

n8

16(2n− 5)6

from which the covariance follows.
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5 Moments of General Subtrees

In this chapter, we consider moments of subtrees of arbitrary size. First we

consider the number of k-leaved caterpillars, Ck,n, then the number of k-

leaved subtrees, Sk,n. Additionally, we introduce the rootedness parameter,

r, defined

r =

1, if the tree is rooted,

0, otherwise.

5.1 Moments of k-Caterpillars

5.1.1 Moments of k-Caterpillars under the YHK Model

Theorem 5.1.1. Under the YHK model, for k ≥ 2 and n > 2k, the con-

ditional probability that the number of k-leaved caterpillars in a tree of n

leaves is equal to some constant c is given by

Py(Ck,n+1 = c | Ck,n = a,Ck−1,n = b) =



2(b−a)
n , when a = c− 1,

(k−2)a
n , when a = c+ 1,

(n−2)b+(4−k)a
n , when a = c,

0, otherwise.

Proof. Let Tn be a random n-leaved tree containing a and b k-leaved cater-

pillars and (k − 1)-leaved caterpillars respectively. Then, suppose we apply

one step of the YHK process, splitting a random pendant edge e to give

Tn+1. Partitioning the pendant edge set in Tn as in Table 5.1, we obtain the
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Figure 5.1: An illustration of the edge sets from Table 5.1, for the case
k = 4. Edges in E1 are labelled 1, edges in E2 are labelled 2, and so on.
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following cases:

1. e ∈ E1: the split occurs in a (k − 1)-caterpillar such that it induces

a new k-caterpillar, hence a = c − 1. This occurs with conditional

probability 2(b−a)
n .

2. e ∈ E2: the split occurs in a k-caterpillar such that it destroys an

existing k-caterpillar, hence a = c + 1. This occurs with conditional

probability (k−2)a
n .

3. e ∈ E3: the split occurs elsewhere and does not alter the number of

k-caterpillars. This occurs with conditional probability (n−2)b+(4−k)a
n .

Theorem 5.1.2. Let ψ : Z → Z be an arbitrary function. Then, for k ≥ 3

and n > k, we have

Ey
(
ψ(Ck,n+1)

)
=

2

n
Ey
(
(Ck−1,n − Ck,n)ψ(1 + Ck,n)

)
+
k − 2

n
Ey
(
Ck,nψ(−1 + Ck,n)

)
+

1

n
Ey
(
(n− 2Ck−1,n + (4− k)Ck,n)ψ(Ck,n)

)
.

Proof. As before, the expectation can be found by multiplying our arbitrary

function ψ by the probability, then summing over all possible cases.

Ey
(
ψ(Ck,n+1)

)
=
∑
c

ψ(c)Py(Ck,n+1 = c).

By definition of conditional probability, this is equal to

=
∑
c

∑
a

∑
b

ψ(c)Py(Ck,n+1 = c | Ck,n = a,Ck−1,n = b)Py(Ck,n = a,Ck−1,n = b).

As a, b, and c vary independently of one another, we can rearrange the order
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of summation.

=
∑
a

∑
b

∑
c

ψ(c)Py(Ck,n+1 = c | Ck,n = a,Ck−1,n = b)Py(Ck,n = a,Ck−1,n = b)

=
∑
a

∑
b

Py(Ck,n = a,Ck−1,n = b)

(∑
c

ψ(c)Py(Ck,n+1 = c | Ck,n = a,Ck−1,n = b)

)
.

Substituting in Theorem 5.1.1, we obtain

=
∑
a

∑
b

Py(Ck,n = a,Ck−1,n = b)
1

n

(
2(b− a)ψ(a+ 1) + (k − 2)aψ(a− 1)

+
(
n− 2b+ (4− k)a

)
ψ(a)

)
=

2

n
Ey
(
(Ck−1,n − Ck,n)ψ(1 + Ck,n)

)
+
k − 2

n
Ey
(
Ck,nψ(−1 + Ck,n)

)
+

1

n
Ey
(
(n− 2Ck−1,n + (4− k)Ck,n)ψ(Ck,n)

)
which completes the proof.

Theorem 5.1.3. Rosenberg [2006, Corollary 5.2] The expected number of

k-caterpillars in an unrooted tree generated under the YHK model is given

by

Ey(C∗k,n) =
2k−1n

(k + 1)!
.

for n ≥ 3 and 2 ≤ k < n.

Proof. We present an alternative proof. First, we take ψ(x) = x in theorem

5.1.2, giving us

Ey(C∗k,n+1) =
n− k
n

Ey(C∗k,n) +
2

n
Ey(C∗k−1,n).

As this is a recursion in multiple variables, it resists most standard solution

methods, including the summation factor method we have used elsewhere.

Inspired by the separation of variables method for solving partial differential

equations (see, for example, Polyanin and Nazaikinskii [2015] Section 0.4),

we assume a solution of the form
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Ey(C∗k,n) = K(k)N(n),

where K and N are unknown functions. This gives us

nK(k)N(n+ 1) = (n− k)K(k)N(n) + 2K(k − 1)N(n);

n
N(n+ 1)

N(n)
− n = 2

K(k − 1)

K(k)
− k.

Because the left hand side of the equation depends on n only and the right

hand side depends on k only, for them to be equal to one another, they must

also be equal to a constant, which we denote c. We first consider the left

hand side, which can be rewritten as

N(n+ 1) =
n+ c

n
N(n).

From Wu and Choi [2016] Corollary 2 and Proposition 3, and Theorem 4.1.3,

we have

Ey(C∗2,n) = K(2)N(n) =
n

3
,

Ey(C∗3,n) = K(3)N(n) =
n

6
,

Ey(C∗4,n) = K(4)N(n) =
n

15
,

which suggests a solution of the form N(n) = an. We can take N(n) = n

without loss of generality, giving us c = 1. The right hand side then becomes

K(k) =
2

k + 1
K(k − 1).

Combined with the initial condition that K(2) = 1
3 , this can easily be solved

to give

K(k) =
2k−1

(k + 1)!

from which Theorem 5.1.3 follows.
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Lemma 5.1.1. The probability that a rooted YHK tree or subtree with n

leaves is a caterpillar is given by

Py(T ∗n = C∗n,n) =
2n−2

(n− 1)!

for n ≥ 2.

Proof. A tree with three leaves is always a pitchfork, and hence is a cater-

pillar. If a tree is already a caterpillar, for it to remain a caterpillar after

being split, it must have been split at one of the two pendant edges in the

cherry. Hence, we have

Py(T ∗3 = C∗3,3) = 1

and

Py(T ∗n = C∗n,n) =
2

n− 1
Py(T ∗n−1 = C∗n−1,n−1).

Together, these give us

Py(T ∗n = C∗n,n) =
n∏
i=4

2

i− 1

which can easily be solved to give Lemma 5.1.1.

Theorem 5.1.4. The expected number of k-caterpillars in an unrooted YHK

tree is given by

Ey(C◦k,n) =
2k−1n

(k + 1)!
+

2k

(n− 1)k

k−1∑
j=1

2n− j − 3

2n− 4

(
n− 2

j − 1

)

for k ≥ 2 and n > 2k. The sum on the right hand side is a partial sum

of binomial coefficients, which has no known closed form solution [Graham

et al. [1989], p165]. However, approximations do exist [Worsch, 1994].

Proof. Results on unrooted YHK trees can be understood intuitively as the

result of an unrooting process applied to a rooted YHK tree. Thus, the mean
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Figure 5.2: Examples of trees that will induce a 4-caterpillar when unrooted.
The triangles represent the (n − 4)-subtree comprising the remainder of
the tree. Left: case 1. Middle: case 2, with a 2-caterpillar (above) or 3-
caterpillar (below). Right: Case 3, again with a 2-caterpillar (above) or
3-caterpillar (below).

number of k-caterpillars in an unrooted tree is equal to the mean number

of k-caterpillars already present in a rooted tree, plus the mean number of

caterpillars induced by the unrooting process itself.

A new k-caterpillar can be induced in only three ways:

1. The k splits closest to the root each have exactly one pendant edge.

2. As above, but the split closest to the root instead has a j-caterpillar,

where j < k.

3. As above, but the j-caterpillar is at the split second closest to the root.

See Figure 5.2 for an example. Any other arrangement cannot induce

a k-caterpillar when unrooted, and there is no way to induce multiple k-

caterpillars by unrooting.

By Rosenberg [2006] Theorem 3.7, the probability that an n leaved tree

or subtree is split into a k-subtree and an (n − k)-subtree is equal to 1
n−1

if k = n
2 and n is even, or 2

n−1 if k 6= n
2 and k ∈ {1, 2, . . . , n − 1}. For the

remainder of the proof we assume that k < n
2 .

In case 1, the tree is split into a pendant edge and an (n − 1)-subtree,

which has probability 2
n−1 . The (n− 1)-subtree is then split into a pendant
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edge and an (n− 2)-subtree, and so on. The probability of k splits like this

is equal to

k∏
i=1

2

n− i
=

2k

(n− 1)k
.

For cases 2 and 3, it is simplest to consider them as variations of case

1, with two differences. First, j of the splits do not occur, and second we

must multiply by the probability that the j-subtree is a caterpillar, which

is provided by Lemma 5.1.1. We must also sum over all possible values of

j. Summing all three cases together, we obtain

Ey(C◦k,n) = Ey(C∗k,n) +
2k

(n− 1)k

(
1 +

k−1∑
j=2

2j−2

(j − 1)!

(n− 2)j−1 + (n− 3)j−1

2j−1

)

= Ey(C∗k,n) +
2k

(n− 1)k

(
1 +

k−1∑
j=2

(n− 2)j−1 + (n− 3)j−1

2(j − 1)!

)

By the definition of the binomial operator, then, we have

= Ey(C∗k,n) +
2k

(n− 1)k

(
1 +

1

2

k−1∑
j=2

(
n− 2

j − 1

)
+

(
n− 3

j − 1

))
We note that the 1 representing case 1. can be absorbed into the sum

by changing the lower limit to j = 1.

= Ey(C∗k,n) +
2k

(n− 1)k
1

2

k−1∑
j=1

(
n− 2

j − 1

)
+

(
n− 3

j − 1

)
.

By careful manipulation of the second binomial, we can obtain

= Ey(C∗k,n) +
2k

(n− 1)k
1

2

k−1∑
j=1

(
1 +

n− j − 1

n− 2

)(
n− 2

j − 1

)

= Ey(C∗k,n) +
2k

(n− 1)k

k−1∑
j=1

2n− j − 3

2n− 4

(
n− 2

j − 1

)
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completing the proof.

5.1.2 Moments of k-Caterpillars under the PDA Model

Theorem 5.1.5. Under the PDA model, the conditional probability that the

number of k-leaved caterpillars in a tree of n leaves is equal to some constant

c is given by

Pu(Ck,n+1 = c | Ck,n = a,Ck−1,n = b) =



k(b−a)
2n−3+2r , when a = c− 1;

(k−2)a
2n−3+2r , when a = c+ 1;

1 + 2a−kb
2n−3+2r , when a = c;

0, otherwise

for k ≥ 2 and n > 2k.

Proof. The proof follows similarly to Theorem 5.1.1. Let Tn again be a ran-

dom n-leaved tree containing a and b k-leaved and (k−1)-leaved caterpillars

respectively. Suppose we then apply one step of the PDA process, splitting

a random edge e to give Tn+1. Partitioning the edge set in Tn as in Table

5.1, we obtain the following cases:

1. e ∈ E1: the split occurs in a (k − 1)-caterpillar such that it induces

a new k-caterpillar, hence a = c − 1. This occurs with conditional

probability k(b−a)
2n−3+2r .

2. e ∈ E2: the split occurs in a k-caterpillar such that it destroys an

existing k-caterpillar, hence a = c + 1. This occurs with conditional

probability (k−2)a
2n−3+2r .

3. e ∈ E3: the split occurs elsewhere and does not alter the number of

k-caterpillars. This occurs with conditional probability 1 + 2a−kb
2n−3+2r .
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Theorem 5.1.6. The number of k-caterpillars in a rooted or unrooted tree

generated under the PDA model obeys the recursion

Eu
(
ψ(Ck,n+1)

)
=

k

2n− 3 + 2r
Eu
(
(Ck−1,n − Ck,n)ψ(Ck,n + 1)

)
+

k − 2

2n− 3 + 2r
Eu
(
Ck,nψ(Ck,n − 1)

)
+

1

2n− 3 + 2r
Eu
(
(2n− 3 + 2r + 2Ck,n − kCk−1,n)ψ(Ck,n)

)
for k ≥ 2 and n > 2k.

Proof. The proof follows similarly to that of Theorem 5.1.2. By exactly the

same arguments, we have

Eu
(
ψ(Ck,n)

)
=
∑
a

∑
b

Pu(Ck,n = a,Ck−1,n = b)

×

(∑
c

ψ(c)Pu(Ck,n+1 = c | Ck,n = a,Ck−1,n = b)

)
.

Substituting in Theorem 5.1.5, this is then equal to

=
∑
a

∑
b

Pu(Ck,n = a,Ck−1,n = b)
1

2n− 3 + 2r

(
k(b− a)ψ(a+ 1)

+ (k − 2)aψ(a− 1) +
(
2n− 3 + 2r + 2a− kb

)
ψ(a)

)
=

2

2n− 3 + 2r
Eu
(
(Ck−1,n − Ck,n)ψ(1 + Ck,n)

)
+

k − 2

2n− 3 + 2r
Eu
(
Ck,nψ(−1 + Ck,n)

)
+

1

2n− 3 + 2r
Eu
(
(2n− 3 + 2r + 2Ck,n − kCk−1,n)ψ(Ck,n)

)
which completes the proof.

Theorem 5.1.7. The mean number of k-caterpillars in an n-leaved tree

generated under the PDA model is given by

Eu(Ck,n) =
nk

2(2n− 5 + 2r)
k−1
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for k ≥ 2 and n > 2k.

Proof. Substituting ψ(x) = x into Theorem 5.1.6 gives us

Eu(Ck,n+1) =
k

2n− 3 + 2r
Eu(Ck−1,n) +

2n− 2k − 1 + 2r

2n− 3 + 2r
Eu(Ck,n)

We begin by summarising known values of Eu(Ck,n) for small k. From

Corollary 4 and Proposition 5 of Wu and Choi [2016], and Theorem 4.2.3,

we have

Eu(C∗2,n) = Eu(B∗n) =
n2

2(2n− 3)

Eu(C∗3,n) = Eu(A∗n) =
n3

2(2n− 3)2

Eu(C∗4,n) = Eu(C∗n) =
n4

2(2n− 3)3

Then, from Theorems 3.2.3, 3.2.4, and 4.2.7, we have

Eu(C◦2,n) = Eu(B◦n) =
n2

2(2n− 5)

Eu(C◦3,n) = Eu(A◦n) =
n3

2(2n− 5)2

Eu(C◦4,n) = Eu(C◦n) =
n4

2(2n− 5)3

Given these forms, it is natural to take the ansatz

Eu(Ck,n) =
nk

2(2n− 5 + 2r)
k−1

which can be confirmed by substitution to be a solution to the above recur-

sion.
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Figure 5.3: An illustration of the edge sets from Table 5.2. Edges in E1 are
labelled 1, edges in E2 are labelled 2, and so on.

5.2 Moments of k-Subtrees

Recall that Sk,n is the number of k-subtrees in a random tree with n leaves.

Furthermore, let S̃k,n be the number of independent k-subtrees in a random

tree with n leaves. Here a k-subtree is defined as independent if it is not

contained in a (k + 1)-subtrees.

5.2.1 Moments of k-Subtrees under the YHK Model

Theorem 5.2.1. Under the YHK model, for k ≥ 3, the conditional prob-

ability that the number of k-subtrees in a tree of n leaves is equal to some
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given s is given by

Py(Sk,n+1 = s | Sk,n = a, Sk−1,n = b, S̃k−1,n = c)

=



(k−1)c
n , when a = s− 1;

ka−(k−1)(b−c)
n , when a = s+ 1;

n−ka+(k−1)b−2(k−1)c
n , when a = s;

0, otherwise

for k ≥ 2 and n > 2k.

Proof. Let Tn be a random n-leaved tree containing a k-leaved subtrees, b

total (k − 1)-trees (both dependent and independent), and c independent

(k − 1)-subtrees. Then, suppose we apply one step of the YHK process,

splitting a random pendant edge e to give Tn+1. Partitioning the pendant

edge set in Tn as in Table 5.2, we obtain the following cases:

1. e ∈ E1: the split occurs in an independent (k− 1)-subtree such that it

induces a new k-subtree, hence a = s−1. This occurs with conditional

probability (k−1)c
n .

2. e ∈ E2: the split occurs in a k-subtree such that it destroys an existing

k-subtree, hence a = s + 1. This occurs with conditional probability
ka−(k−1)(b−c)

n .

3. e ∈ E3: the split occurs elsewhere and does not alter the number

of k-subtrees, hence a = s. This occurs with conditional probability
n−ka+(k−1)b−2(k−1)c

n .

Theorem 5.2.2. The expectation of the number of k-subtrees in a random
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rooted or unrooted tree generated under the YHK model obeys the recursion

Ey
(
ψ(Sk,n+1)

)
=

1

n
Ey
(

(k − 1)S̃k−1,nψ(Sk,n + 1)
)

+
1

n
Ey
((
kSk,n − (k − 1)(Sk−1,n − S̃k−1,n)

)
ψ(Sk,n − 1)

)
+

1

n
Ey
((
n− kSk,n + (k − 1)Sk−1,n − 2(k − 1)S̃k−1,n

)
ψ(Sk,n)

)
for k ≥ 2 and n > 2k.

Proof. The proof follows similarly to that of Theorem 5.1.2. We begin by

noting

Ey
(
ψ(Sk,n+1)

)
=
∑
s

ψ(s)Py(Sk,n+1)

=
∑
s

∑
a

∑
b

∑
c

ψ(s)Py(Sk,n+1 = s | Sk,n = a, Sk−1,n = b, S̃k−1,n = c)

× Py(Sk,n = a, Sk−1,n = b, S̃k−1,n = c).

As a, b, c, and s all vary independently of one another, we can rearrange

the order of summation.

=
∑
a

∑
b

∑
c

Py(Sk,n = a, Sk−1,n = b, S̃k−1,n = c)

×
∑
s

ψ(s)Py(Sk,n+1 = s | Sk,n = a, Sk−1,n = b, S̃k−1,n = c).
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From Theorem 5.2.1, then, we have

=
∑
a

∑
b

∑
c

Py(Sk,n = a, Sk−1,n = b, S̃k−1,n = c)

×

(
(k − 1)cψ(a+ 1)

n
+

(
ka− (k − 1)(b− c)

)
ψ(a− 1))

n

+

(
n− ka+ (k − 1)b− 2(k − 1)c

)
ψ(a)

n

)
=

1

n
Ey
(

(k − 1)S̃k−1,nψ(Sk,n + 1)
)

+
1

n
Ey
((
kSk,n − (k − 1)(Sk−1,n − S̃k−1,n)

)
ψ(Sk,n − 1)

)
+

1

n
Ey
((
n− kSk,n + (k − 1)Sk−1,n − 2(k − 1)S̃k−1,n

)
ψ(Sk,n)

)
which completes the proof.

Theorem 5.2.3. Rosenberg [2006] Theorem 4.4 (i) states that

Ey(S∗k,n) =
2n

k(k + 1)

for k ≥ 2 and n > 2k.

Proof. We present an alternative proof, similar to that of Theorem 5.1.3.

Substituting ψ(x) = x into Theorem 5.2.2 gives us

Ey(S∗k,n+1) =
n− k
n

Ey(S∗k,n) +
k − 1

n
Ey(S∗k−1,n).

Again, we assume that the solution takes the form

Ey(S∗k,n) = K(k)N(n).

Substituting in, this gives us

nK(k)N(n+ 1) = (n− k)K(k)N(n) + (k − 1)K(k − 1)N(n)

n
N(n+ 1)

N(n)
− n = (k − 1)

K(k − 1)

K(k)
− k.
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As the left hand side depends only on n and the right hand side depends

only on k, for them to be equal to one another, both must be equal to a

constant, which we denote c. By the same argument as in Theorem 5.1.3,

we have N(n) = n and c = 1. This leaves us with

K(k) =
k − 1

k + 1
K(k − 1).

Combined with the initial condition K(2) = 1
3 , this can easily be solved to

give

K(k) =
2

k(k + 1)

from which Theorem 5.2.3 follows.

Theorem 5.2.4. Let ψ(k) = P ({2, . . . , k}) \ {}, where P (S) is the power

set of S. Then, for k ≥ 2 and n > 2k, we have

Ey(S◦k,n) =
2n

k(k + 1)
+

2

n− 1

∑
S∈ψ(k)

(∏
j∈S

2

n− j

)
.

Proof. Similar to the proof of Theorem 5.1.4, we consider this problem in

terms of unrooting. Hence, the mean number of k-subtrees in an unrooted

tree will be equal to the number of k-subtrees in a rooted tree, plus the

probability that a k-subtree is induced by the unrooting process.

In order to induce a k-subtree, an (n − k)-subtree must exist, and the

remaining k leaves must not comprise a k-subtree already. For this to occur,

on the path between the root and the (n−k)-subtree, there must be 2 ≤ i ≤ k
nodes, each of which must have a daughter subtree of size 1 ≤ ji ≤ k − 1,

such that the sum of all j is equal to k.

The first node below the root will separate the tree into a j1-subtree and

an (n − j1)-subtree, with probability 2
n−1 . The second node will separate

into a j2-subtree and an (n− j1 − j2)-subtree, with probability 2
n−j1−1 and

so on. The probability of any particular topology will then be equal to

∏
i

2

n− ji
.
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Figure 5.4: An example for k = 4. The triangles represent the subtrees
containing the remaining n − 4 leaves. The first seven trees will induce a
4-subtree when unrooted, whereas the last two (corresponding to the empty
set of splits considered) will not.
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Any given 2
n−j term may exist or not, based on the size of the previous

j-subtree, with two exceptions: the first 2
n−1 term must always be present,

and there must be at least one other term. The set of all combinations of

j being present or not is equivalent to the power set of {2, . . . , k}, with the

exception of the empty set, which in this case corresponds to a k-subtree

already being present. Summing over all members of the modified power set

completes the proof.

Corollary 5.2.1. Again for k ≥ 2, n > 2k, we have

2n

k(k + 1)
+

2k(2k−1 − 1)

(n− 1)k
< Ey(S◦k,n) <

2n

k(k + 1)
+

4(2k−1 − 1)

(n− 1)(n− k)
.

Proof. If a given set has cardinality n then its power set has cardinality 2n

(see, for example, Halmos [1960] p20). Hence, we have

|ψ(k)| = 2k−1 − 1

Next, given that k ≥ 2 and n > 2k, we have n− k > 5
2 , and hence

0 <
2

n− j
< 1

for all possible j. It follows that the largest possible term in the sum seen

in Theorem 5.2.4 is equal to

2

n− k
and the smallest possible term is equal to

2k−1

(n− 2)k−1
.

If we assume that all 2k−1 − 1 terms in the sum are equal to the largest

possible value, we obtain an upper bound,

Ey(S◦k,n) <
2

n− 1
(2k−1 − 1)

2

n− k
=

4(2k−1 − 1)

(n− 1)(n− k)
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and conversely if all terms are equal to the smallest value we obtain a lower

bound

Ey(S◦k,n) >
2

n− 1
(2k−1 − 1)

2k−1

(n− 2)k−1
=

2k(2k−1 − 1)

(n− 1)k
.

5.2.2 Moments of k-Subtrees under the PDA Model

Theorem 5.2.5. Under the PDA model, for k ≥ 3, the conditional prob-

ability that the number of k-subtrees in a tree of n leaves is equal to some

given s is given by

Pu(Sk,n+1 = s | Sk,n = a, Sk−1,n = b, S̃k−1,n = c)

=



(2k−3)c
2n−3+2r , when a = s− 1;

(2k−2)a−(2k−3)(b−c)
2n−3+2r , when a = s+ 1;

2n−3+2r−(2k−2)a+(2k−3)b−2(2k−3)c
2n−3+2r , when a = s;

0, otherwise

for k ≥ 2 and n > 2k.

Proof. Let Tn be a random n-leaved tree containing a k-leaved subtrees, b

(k−1)-trees, and c independent (k−1)-subtrees. Then, suppose we apply one

step of the PDA process, splitting a random edge e to give Tn+1. Partitioning

the edge set in Tn as in Table 5.2, we obtain the following cases:

1. e ∈ E1: the split occurs in an independent (k− 1)-subtree such that it

induces a new k-subtree, hence a = s−1. This occurs with probability
(2k−3)c
2n−3+2r as it is conditioned in that Tn contains c copies of independent

(k − 1)-subtrees.

2. e ∈ E2: the split occurs in a k-subtree such that it destroys an existing

k-subtree, hence a = s + 1. This occurs with conditional probability
(2k−2)a−(2k−3)(b−c)

2n−3+2r .
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3. e ∈ E3: the split occurs elsewhere and does not alter the number

of k-subtrees, hence a = s. This occurs with conditional probability
2n−3+2r−(2k−2)a+(2k−3)b−2(2k−3)c

2n−3+2r .

Theorem 5.2.6. The expectation of the number of k-subtrees in a random

rooted or unrooted tree generated under teh PDA model obeys the recursion

Eu
(
ψ(Sk,n+1)

)
=

1

2n− 3 + 2r
Eu
(

(2k − 3)S̃k−1,nψ(Sk,n + 1)
)

+
1

2n− 3 + 2r
Eu
(

(2k − 2)Sk,n

− (2k − 3)(Sk−1,n − S̃k−1,n)ψ(Sk,n − 1)
)

+
1

2n− 3 + 2r
Eu
(

2n− 3 + 2r − (2k − 2)Sk,n

+ (2k − 3)Sk−1,n − 2(2k − 3)S̃k−1,nψ(Sk,n)
)

for k ≥ 2 and n > 2k.

The proof follows similarly to that of Theorem 5.2.2 and hence is omitted

here.

Theorem 5.2.7. The expected number of k-subtrees in an n-leaved tree

generated under the PDA model is given by

Eu(Sk,n) =
(2k − 3)!!

k!

nk

(2n− 5 + 2r)
k−1

for k ≥ 2 and n > 2k.

Proof. Letting ψ(x) = x in Theorem 5.2.6 and assuming the solution takes

the form Eu(Sk,n) = f(k)Eu(Ck,n), we obtain the straightforward recursion

f(k) =
2k − 3

k
f(k − 1).

Combined with the initial condition f(2) = 1
2 , this can be easily solved to

give
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f(k) =
(2k − 3)!!

k!

from which the expectation follows.
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6 Discussion

In this final chapter we present a discussion of the main results obtained

in this thesis, as well as a section on applications and directions for future

research

6.1 Summary of Results

In Chapter 3, we showed that existing results based on subtree moments in

rooted trees can be directly extended to unrooted trees. In some cases, even

the recursions are the same (compare, for example, Theorem 3.1.2 and The-

orem 2 of Wu and Choi [2016]) however the differences in initial conditions

can lead to very different forms for the joint and marginal distributions.

This shows that caution must be taken when directly comparing rooted and

unrooted trees, especially smaller trees where the presence or absence of the

root has a proportionally larger effect.

Chapter 4 shows that results can be obtained for larger subtrees, in-

cluding directly comparing different subtrees of the same number of leaves,

which opened the way towards separately considering k-caterpillars and k-

subtrees in Chapter 5. In Chapter 5 we showed that limited but nonetheless

useful results can be obtained for subtrees of arbitrary size and topology.

Tables 6.1, 6.2, 6.3 and 6.4 provide an easy comparison of all the moments

calculated in Chapters 3, 4, and 5. It is immediately apparent that the mean

numbers of cherries, pitchforks, 4-caterpillars, and crabs are each greater in

unrooted trees than rooted trees, under both the YHK and PDA models.

Indeed, comparing the rooted and unrooted results in Table 6.4 shows this

is true for all k-subtrees and caterpillars.
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The variances and covariances do not follow such an obvious pattern,

with some being greater in the rooted case and others greater in the unrooted

case. However, we observe that as n→∞, the difference between the rooted

and unrooted cases approaches zero. This makes intuitive sense, as the larger

a tree is, the greater the number of non-root edges in the tree, and hence

the smaller an effect the presence or absence of the root would be expected

to make. For a more detailed summary of results, see Appendix 7.2.

6.2 Applications and future direction

Understanding tree generation processes is crucial for analysing phylogenetic

trees inferred from empirical datasets, and can help recognise events in the

evolutionary history such as adaptive radiation or mass extinctions [Mooers

and Heard, 1997]. It also has applications to conservation and maintaining

biodiversity [Gernhard et al., 2008].

Pouryahya and Sankoff [2022] studied the polyploidisation history of the

genome of a widely cultivated variety of sugarcane, Saccharum officinarum.

They used a “one-branch-at-a-time” model, equivalent to the PDA model

studied here, as a null model to explain the observed polyploidisation of

subgenomes. Through experimentally calculating the expected numbers of

cherries (“terminal pairs”), pitchforks (“triples”) and 4-subtrees (“quadru-

ples”), they were able to reject the null hypothesis. The results in Theorems

3.2.3, 3.2.4, 4.2.7, and 4.2.8 of this thesis confirm Conjectures 2.2, 2.3, 3.2,

3.3, 4.2, 4.3, 4.5 and 4.6 in their paper. Together with Theorems 5.1.7 and

5.2.7, we open the way to applying this method to equivalent problems even

on much larger genomes [Choi et al., 2024].

An obvious immediate avenue for future research is finding the variances

and covariances for k-subtrees and k-caterpillars. We also conjecture that

it is possible to obtain forms of Theorems 5.1.1, 5.1.5, 5.2.1, and 5.2.5 that

are not conditional on the independence of smaller subtrees. It may also be

possible to find other statistical measures of subtree distributions, such as

log-concavity or total variation distance between distributions of different

subtrees.
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Another avenue would be to extend these results to the more general

Ford alpha model, which encompasses both the YHK and PDA models.

This has already been accomplished for cherries and pitchforks [Kaur et al.,

2023] but not yet for larger subtrees.

Extended Pólya urn models have been used to obtain further statistical

results for subtrees under the YHK, PDA, and alpha models, most notably

proving that the numbers of cherries and pitchforks are asymptotically nor-

mally distributed [McKenzie and Steel, 2000, Choi et al., 2021, Kaur et al.,

2023]. However, it remains open to extend these results to larger subtrees.

While less straightforward than the recursive approach taken in this

thesis, generating functions have been used in corresponding problems on

ranked trees [Disanto and Wiehe, 2013], and could prove fruitful on unranked

trees as well.

More ambitiously, it may be possible to apply similar methods to study-

ing subtrees (or subgraphs) in random reticulated phylogenetic networks (or

random graphs). See, for example, Bienvenu et al. [2022], Stufler [2022] for

recent progress.
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7 Appendices

The appendices include two sections. Section 7.1 comprises the code used

to verify the initial conditions from Section 2.6. Section 7.2 comprises a

detailed summary of results, alongside the initial conditions and summation

factors used to calculate them.

7.1 Computed Probabilities

# −∗− cod ing : u t f−8 −∗−
”””

Funct ions to c a l c u l a t e t h e p r o b a b i l i t i e s o f f i n d i n g a g i v en number o f s u b t r e e s

in a t r e e w i th n l e a v e s .

”””

from math import f a c t o r i a l as f a c t

Ry known values = {}

def Ry(n , k ) :

”””

P r o b a b i l i t y t h a t a roo t ed t r e e under t h e YHK model w i th n l e a v e s c on t a i n s k c h e r r i e s .

”””

global Ry known values

# Check f o r impo s s i b l e v a l u e s .

i f n < 3 :

raise ValueError

i f k > n / 2 :

return 0

# Check f o r i n i t i a l c o n d i t i o n s .

i f n == 3 :

i f k == 1 :

return 1

else :

return 0
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# Check i f i t ’ s a l r e a d y been c a l c u l a t e d .

i f (n , k ) in Ry known values :

return Ry known values [ ( n , k ) ]

# Otherwise , c a l c u l a t e i t r e c u r s i v e l y .

else :

c u r r en t va lu e = ( 2 ∗ k ∗ Ry(n−1, k ) / (n−1) ) + ( (n − 2∗k + 1) ∗ Ry(n−1, k−1) / (n − 1) )

Ry known values [ ( n , k ) ] = cu r r en t va lu e

return cu r r en t va lu e

Uy known values = {}

def Uy(n , k ) :

”””

P r o b a b i l i t y t h a t an unrooted t r e e under t h e YHK model w i th n l e a v e s c on t a i n s k c h e r r i e s .

”””

global Uy known values

i f n < 4 :

raise ValueError

i f k > n / 2 :

return 0

i f n == 4 :

i f k == 2 :

return 1

else :

return 0

i f (n , k ) in Uy known values :

return Uy known values [ ( n , k ) ]

else :

c u r r en t va lu e = ( 2 ∗ k ∗ Uy(n−1, k ) / (n−1) ) + ( (n − 2∗k + 1) ∗ Uy(n−1, k−1) / (n − 1) )

Uy known values [ ( n , k ) ] = cu r r en t va lu e

return cu r r en t va lu e

def Ru(n , k ) :

”””

P r o b a b i l i t y t h a t a roo t ed t r e e under t h e PDA model w i th n l e a v e s c on t a i n s k c h e r r i e s .

”””

return ( f a c t (n) ∗ f a c t (n − 1) ∗ f a c t (n − 2) ∗ 2 ∗∗ (n − 2∗k ) ) / ( f a c t (n − 2∗k ) ∗ f a c t (2∗n − 2) ∗ f a c t ( k ) ∗ f a c t ( k − 1) )

def Uu(n , k ) :

”””

P r o b a b i l i t y t h a t an unrooted t r e e under t h e PDA model w i th n l e a v e s c on t a i n s k c h e r r i e s .

”””

i f k == 1 :

return 0

return ( f a c t (n) ∗ f a c t (n − 2) ∗ f a c t (n − 4) ∗ 2 ∗∗ (n − 2∗k ) ) / ( f a c t (n − 2∗k ) ∗ f a c t (2∗n − 4) ∗ f a c t ( k ) ∗ f a c t ( k − 2) )

Py known values = {}
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def Py(n , a , b ) :

”””

P r o b a b i l i t y t h a t an unrooted t r e e under t h e YHK model w i th n l e a v e s c on t a i n s a p i t c h f o r k s and b c h e r r i e s .

”””

global Py known values

# I n i t i a l known va l u e .

i f n == 7 :

i f a == 1 and b == 3 :

return 7/15

e l i f a == 2 and b == 2 :

return 8/15

else :

return 0

# Value has a l r e a d y been c a l c u l a t e d .

e l i f (n , a , b) in Py known values :

return Py known values [ ( n , a , b ) ]

# Have to a c t u a l l y c a l c u l a t e t h e v a l u e r e c u r s i v e l y .

else :

c u r r en t va lu e = (2∗a / (n − 1) ) ∗ Py(n−1, a , b) + ( ( a+1) / (n−1)) ∗ Py(n−1, a+1, b−1) + ((2∗ ( b − a + 1)) / (n − 1) ) ∗ Py(n−1, a−1, b) + ( ( n − a − 2∗b + 1) / (n − 1) ) ∗ Py(n−1, a , b−1)

Py known values [ ( n , a , b ) ] = cu r r en t va lu e

return cu r r en t va lu e

Pu known values = {}

def Pu(n , a , b ) :

”””

P r o b a b i l i t y t h a t an unrooted t r e e under t h e PDA model w i th n l e a v e s c on t a i n s a p i t c h f o r k s and b c h e r r i e s .

”””

global Pu known values

# I n i t i a l known va l u e .

i f n == 7 :

i f a == 1 and b == 3 :

return 1/3

e l i f a == 2 and b == 2 :

return 2/3

else :

return 0

# Value has a l r e a d y been c a l c u l a t e d .

e l i f (n , a , b) in Pu known values :

return Pu known values [ ( n , a , b ) ]

# Have to a c t u a l l y c a l c u l a t e t h e v a l u e r e c u r s i v e l y .

else :

c u r r en t va lu e = ( ( n + 3∗a − b − 4) / (2∗n − 5) ) ∗ Pu(n−1, a , b) + ( ( a + 1) / (2∗n − 5) ) ∗ Pu(n−1, a+1, b−1) + ((3∗ ( b − a + 1)) / (2∗n − 5) ) ∗ Pu(n−1, a−1, b) + ( ( n − a − 2∗b + 1) / (2∗n − 5) ) ∗ Pu(n−1, a , b−1)

Pu known values [ ( n , a , b ) ] = cu r r en t va lu e

return cu r r en t va lu e

P4y known values = {}

def P4y(n , a , b , c , d , r ) :

”””

P r o b a b i l i t y t h a t a t r e e under t h e YHK model w i th n l e a v e s c on t a i n s e x a c t l y

a p i t c h f o r k s , b c h e r r i e s , c 4− c a t e r p i l l a r s , and d 4− f o r k s . r i s True i f t h e

t r e e i s rooted , or Fa l s e i f t h e t r e e i s unrooted .
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”””

global P4y known values

i f r :

i f n < 5 :

raise ValueError ( ”Recurs ion not va l i d f o r n < 5 . ” )

i f n == 5 :

i f ( a , b , c , d ) == (1 , 2 , 0 , 0 ) :

return 1/2

e l i f ( a , b , c , d ) == (0 , 2 , 0 , 1 ) :

return 1/6

e l i f ( a , b , c , d ) == (1 , 1 , 1 , 0 ) :

return 1/3

else :

return 0

else :

i f n < 8 :

raise ValueError ( ”Recurs ion not va l i d f o r n < 8 . ” )

i f n == 8 :

i f ( a , b , c , d ) == (2 , 2 , 2 , 0 ) :

return 32/105

e l i f ( a , b , c , d ) == (2 , 3 , 0 , 0 ) :

return 12/35

e l i f ( a , b , c , d ) == (1 , 3 , 1 , 1 ) :

return 2/7

e l i f ( a , b , c , d ) == (0 , 4 , 0 , 2 ) :

return 1/15

else :

return 0

i f (n , a , b , c , d , r ) in P4y known values :

return P4y known values [ ( n , a , b , c , d , r ) ]

else :

c u r r en t va lu e = (1/(n − 1) ) ∗ (

(4∗d + 4) ∗ P4y(n−1, a−1, b , c , d+1, r )

+ (2∗ c ) ∗ P4y(n−1, a , b , c , d , r )

+ ( c + 1) ∗ P4y(n−1, a+1, b−1, c+1, d−1, r )

+ ( c + 1) ∗ P4y(n−1, a , b−1, c+1, d , r )

+ 2 ∗ ( a − c + 1) ∗ P4y(n−1, a , b , c−1, d , r )

+ ( a − c + 1) ∗ P4y(n−1, a+1, b−1, c , d−1, r )

+ 2 ∗ (b − 2∗d − a + 1) ∗ P4y(n−1, a−1, b , c , d , r )

+ (n − 2∗b − a − c + 1) ∗ P4y(n−1, a , b−1, c , d , r )

)

P4y known values [ ( n , a , b , c , d , r ) ] = cu r r en t va lu e

return cu r r en t va lu e

P4u known values = {}

def P4u(n , a , b , c , d , r ) :

”””

P r o b a b i l i t y t h a t a t r e e under t h e PDA model w i th n l e a v e s c on t a i n s e x a c t l y

a p i t c h f o r k s , b c h e r r i e s , c 4− c a t e r p i l l a r s , and d 4− f o r k s . r i s True i f t h e

t r e e i s rooted , or Fa l s e i f t h e t r e e i s unrooted .

”””

global P4u known values

i f r :
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i f n < 5 :

raise ValueError ( ”Recurs ion not va l i d f o r n < 5 . ” )

i f n == 5 :

i f ( a , b , c , d ) == (1 , 2 , 0 , 0 ) :

return 2/7

e l i f ( a , b , c , d ) == (0 , 2 , 0 , 1 ) :

return 1/7

e l i f ( a , b , c , d ) == (1 , 1 , 1 , 0 ) :

return 4/7

else :

return 0

else :

i f n < 8 :

raise ValueError ( ”Recurs ion not va l i d f o r n < 8 . ” )

i f n == 8 :

i f ( a , b , c , d ) == (2 , 2 , 2 , 0 ) :

return 16/33

e l i f ( a , b , c , d ) == (2 , 3 , 0 , 0 ) :

return 8/33

e l i f ( a , b , c , d ) == (1 , 3 , 1 , 1 ) :

return 8/33

e l i f ( a , b , c , d ) == (0 , 4 , 0 , 2 ) :

return 1/33

else :

return 0

i f (n , a , b , c , d , r ) in P4u known values :

return P4u known values [ ( n , a , b , c , d , r ) ]

else :

c u r r en t va lu e = (1/(2∗n − 5 + 2∗ r ) ) ∗ (

(6∗d + 6) ∗ P4u(n−1, a−1, b , c , d+1, r )

+ (n − 4 + 2∗ r + 4∗ c − a − b) ∗ P4u(n−1, a , b , c , d , r )

+ ( c + 1) ∗ P4u(n−1, a+1, b−1, c+1, d−1, r )

+ ( c + 1) ∗ P4u(n−1, a , b−1, c+1, d , r )

+ 4 ∗ ( a − c + 1) ∗ P4u(n−1, a , b , c−1, d , r )

+ ( a − c + 1) ∗ P4u(n−1, a+1, b−1, c , d−1, r )

+ 3 ∗ (b − a − 2∗d + 1) ∗ P4u(n−1, a−1, b , c , d , r )

+ (n + 1 − 2∗b − a − c ) ∗ P4u(n−1, a , b−1, c , d , r )

)

P4u known values [ ( n , a , b , c , d , r ) ] = cu r r en t va lu e

return cu r r en t va lu e

def Ey(N, A, B, C, D, r ) :

”””

Expec ted va l u e o f t h e random v a r i a b l e s A, B, C, D, in a t r e e w i th N l e a v e s , under t h e YHK model .

Arguments A, B, C, D are t h e r e s p e c t i v e powers o f t h e random v a r i a b l e s .

e . g . Ey( B 8 C 8 ) = E(8 , 0 , 1 , 1 , 0)

”””

E = 0

for a in range (N//3 +1):

for b in range (1 , N//2 + 1 ) :

for c in range (N//4 + 1 ) :

for d in range (N//4 + 1 ) :

E += (a ∗∗ A) ∗ (b ∗∗ B) ∗ ( c ∗∗ C) ∗ (d ∗∗ D) ∗ P4y(N, a , b , c , d , r )

return E
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def Eu(N, A, B, C, D, r ) :

”””

Expec ted va l u e o f t h e random v a r i a b l e s A, B, C, D, in a t r e e w i th N l e a v e s , under t h e PDA model .

Arguments A, B, C, D are t h e r e s p e c t i v e powers o f t h e random v a r i a b l e s .

e . g . Eu( B 8 C 8 ) = E(8 , 0 , 1 , 1 , 0)

”””

E = 0

for a in range (N//3 +1):

for b in range (1 , N//2 + 1 ) :

for c in range (N//4 + 1 ) :

for d in range (N//4 + 1 ) :

E += (a ∗∗ A) ∗ (b ∗∗ B) ∗ ( c ∗∗ C) ∗ (d ∗∗ D) ∗ P4u(N, a , b , c , d , r )

return E

7.2 Summary of Results
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