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Abstract

The extinction vortex, a feedback loop between low population and low genetic variation,
is one of the primary ways in which species go extinct. A mathematical model is presented,
derived from first principles based on the fundamental biological processes involved, to inves-
tigate this phenomenon and provide useful predictions and insights into its workings.

A thorough mathematical analysis of the model gives predictions for recovery, extinction,
and colonisation of populations of sexually reproducing organisms. The results are confirmed
by numerical approximations, as well as by an agent-based model with the same set of rules.
The definitions and assumptions used in the model are clearly stated and justified.

The mathematical results derived are applied to real world biological situations, offering
meaningful applications to conservation of endangered species, and to eradication of popu-
lations of invasive species. Possible extensions to the model are considered, based both on
mathematical predictions and on biological phenomena not currently covered by the model.
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1 Introduction

1.1 Motivation
In a time dominated by increasing political unrest, social upheaval, inequality, war, and famine, it
can be tempting to dismiss extinction - especially of species of no obvious benefit to humanity -
as a bourgeois concern, available only to those with the luxury of not having to worry about more
material problems.

1.1.1 The Value of Biodiversity

However, biodiversity does have real, meaningful benefits to all of us. Though somewhat trite by
now, it bears repeating the usual list of arguments given in favour of maintaining biodiversity:

• Species can be directly useful to us. Many new drugs, for instance, are developed from
compounds extracted from the natural world. And we cannot know whether a species will
be useful or not until it’s been thoroughly studied, so we should conserve all undocumented
species just in case. (As a corollary, now that gene editing is becoming more commonplace,
it can also be argued that species are valuable as a source of novel genes).

• We rely upon some species for natural resources; particularly, we depend on edible plants
and animals for agriculture, on trees for forestry, and on aquatic animals for fisheries. This
argument is generally meaningless, firstly because no one would seriously suggest letting
species we directly rely upon go extinct, and secondly because these species are generally not
threatened in the first place.

• Healthy ecosystems actively support the natural resources, above, that we depend upon.
This includes, for instance, pollinators improving crop yields, and prey fish helping fishery
yields. However, these secondary species are usually not irreplaceable, and this only covers
a minority of species anyway.

• Some species actively improve the wider environment for humans. For instance, trees in
urban environments can reduce air pollution, and rainforests and algal blooms take in carbon
dioxide from the air and can help mitigate climate change. Again, however, this only applies
to a minority of species, and often those which aren’t threatened anyway.

• Species have a cultural value. This argument is generally perceived as by far the weakest; most
people will never interact with lions or polar bears in any way other than zoos, children’s
books, and nature documentaries. Who cares if they’re extinct in the wild? From most
people’s perspective, nothing would change.

However, research from the last few decades in the areas of chaos theory and Gaia theory have
revealed a rather more urgent and chilling reason for maintaining biodiversity: namely, the risk of
wholescale ecosystem collapse.

There is substantial historical evidence of mass extinctions, and smaller scale extinctions are
known and documented in modern times. These are well confirmed by theoretical and computa-
tional models of chaotic systems (Gribbin, 2005). The most worrying predictions are the fact that
responses to stresses on the environment are often highly nonlinear, with the ecosystem remaining
stable for a long interval, before suddenly collapsing.

In the event of large scale ecosystem collapse, the consequences for humanity would be dire,
and the natural resources we rely upon would be seriously compromised. Environmental damage
has been identified as one of the major factors influencing civilisation collapse (Diamond, 2005).
At the risk of catastrophising, ecosystem collapse is likely one of the few genuine existential threats
we as a species face, along with climate change and nuclear war.

1.1.2 The Value of Mathematical Modelling

Even if we accept that conserving species is worthwhile, it is not obvious why an abstract, theo-
retical model is of any more help in preventing extinction than actively going out into the habitat
and intervening directly.

There is no doubt that such direct intervention is necessary - species cannot be saved by
differential equations alone - but in practice, good intentions and honest hard work all too often
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fail to lead to the desired results. First and foremost, we must maintain a sense of humility in the
face of nature and remember that we still know very little about how ecosystems really operate,
and that intervention can cause harm as well as good.

Given the harshly limited time and resources available, there is an argument to be made that we
should simply make do with what knowledge we have right now, do our best, and hope it is enough.
But on the other hand, the more indirect, theoretical approaches are substantially more resource
efficient, and their results are often highly generalisable, making them potentially worthwhile even
if we cannot afford more traditional, in depth biological investigations.

Some within the biological scientific community have argued for a change in approaches taken
(Lazebnik, 2004); namely a shift from the descriptive, reductionist approach traditional in biology
in favour of a more abstract and generalised approach. This can be seen, for instance, in the rise
of bioinformatics, however there is room for change in all areas of biology.

Even if a mathematical model of extinction proves to be of no use whatsoever, this does not
imply that it shouldn’t have been done. For one thing, it is impossible to know how useful such a
model will be until it has been created. The utility of mathematics is extremely difficult to judge
in general, and major advances often come about in attempts to model unrelated, specific physical
phenomena (Raymond, 2005).

Though far less significant in comparison to matters of civilisational collapse or major mathe-
matical breakthroughs, on a more personal level, there is the argument to be made that it is better
to be a first rate mathematician than a second rate ecologist (Hardy, 1941).

1.2 Definitions
A population, for the purposes of this document, is any set of living organisms occupying a well
defined, continuous region of space, without complete barriers to migration or breeding. For
example, a set of giant pandas living in one valley would constitute a well defined population, but
the set of all giant pandas would not, as the giant pandas in zoo enclosures cannot freely migrate
or interbreed with wild giant pandas.

The environment of a population is the space the population physically occupies, and the
properties thereof. These properties include the availability of food and shelter, the local climate,
and other species that interact with the population studied, such as predators.

The population density is the number of individual organisms per unit area of environment. In
the case of populations distributed in three dimensions, i.e. aquatic organisms, it can equivalently
be defined as the number of individual organisms per unit volume of environment.

The census population is the total number of individual organisms in a population. It can be
obtained by integrating the population density u over the environment studied E with respect to
area dA.

p =

∫
E

udA

Census population is typically less useful in studying population dynamics than population
density.

The birth rate and death rate are the average number of births and deaths respectively per unit
population density per unit time.

The replacement rate is the birth rate minus the death rate. These rates are generally variable,
and depend on both the environment and the current population density; high population density
will cause more competition for resources and hence fewer births and more deaths per unit time. If
the replacement rate is positive then the population density is increasing; if it is negative then the
population density is decreasing; and if it is zero then the population density remains constant.

The intrinsic birth, death, and replacement rates are the above defined rates in the absence of
the effects of competition. Equivalently, they can be considered the rates evaluated at extremely
low population density. The intrinsic replacement rate can still depend on the properties of the
environment and on genetic effects. In this document, the intrinsic replacement rate is given the
symbol r.

The carrying capacity of an environment is the maximum population density that it can sus-
tainably support in the long term. The carrying capacity can vary in space (some parts of the
environment will be more hospitable than others), in time (summer may be more hospitable than
winter), and with respect to other variables (for example, local predator population density), but
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is usually taken to be constant. In general, if the population is below its carrying capacity at a
given point then the replacement rate will be positive and the population will increase; if the popu-
lation is above its carrying capacity then the replacement rate will be negative and the population
will decrease. One would intuitively expect populations to equilibrate over time to the carrying
capacity, however this is not necessarily the case (see section 5.3.1). In this document, the carrying
capacity is given the symbol κ.

The diffusivity of an environment is a measure of how easily animals can migrate through it.
It can vary in space (terrain may be easier to traverse in some areas than in others), or in time
(bodies of water may freeze and thaw with respect to season, for instance), but is usually taken
to be constant. In this document, the diffusivity is given the symbol D, with subscripts where
relevant.

The genome of an organism is the sum of its genetic information; that is, its DNA sequence.
A gene is a section of the genome which has some function or purpose. Usually this entails

encoding for a protein. Sexually reproducing organisms generally have two copies of every gene.
A locus is a point on the genome at which a gene is situated.
An allele is a variation of a gene that has a different effect. Most genes have at least two alleles.

For example, you may have a gene that dictates eye colour. This gene may have two alleles, one
of which produces blue eyes and the other of which produces brown eyes.

A gene is homozygous if both copies of the gene are the same allele, or heterozygous if the two
copies are different alleles.

The average heterozygosity index of an organism is the ratio between heterozygous and ho-
mozygous loci across the entire genome.

The inbreeding coefficient of an organism is one minus the average heterozygosity index.
Inbreeding is breeding of an organism with another organism which it is very close to genetically.

Because the two genomes share a lot of alleles, the offspring generally has higher homozygosity.
Inbreeding is more common in smaller populations because there are fewer individuals available
to breed with that are not direct relatives. Inbreeding is only applicable to sexual reproduction;
asexual reproduction does not constitute inbreeding.

Genetic drift is another mechanism by which small populations tend to lose genetic variation.
Unless they are strongly acted upon by natural selection, alleles tend to fluctuate in frequency
over time due to the random effects of mating. If the frequency of an allele falls to zero then no
individuals in the population have it, so it cannot come back. The smaller the population, the more
likely it is that random fluctuations will expunge an allele entirely from the population, reducing
the overall genetic variation.

Inbreeding depression is the deleterious effects of low genetic variation. Alleles with negative
effects are usually recessive, which means they only have an effect if they appear homozygously.
Inbreeding increases the homozygosity, and hence increases the likelihood of these negative alleles
being expressed (Frankham et al., 2002).

Mutation is the process by which small abnormalities during reproduction can introduce errors
in the offspring’s genome. Mutation introduces new genetic information, and hence increases
genetic variation, and can act to balance the loss of genetic variation from other processes.

The extinction vortex is a phenomenon in ecology, constituting a feedback loop between low
population, loss of genetic variation due to inbreeding and genetic drift, and reduced fitness due to
inbreeding depression. It is one of the main mechanisms by which species go extinct (Lynch et al.,
1998).

Colonisation is where a population spreads into an environment that it was not previously in.
An invasive species is a non-native species that causes harm to the local ecosystem, typically by

either predating upon, parasitising, or competing for resources against native species. Besides the
ecological damage, invasive species can also cause substantial economic damage to industries such
as agriculture, forestry, fisheries, and tourism. Once colonisation has occurred, invasive species are
typically extremely difficult or impossible to completely eradicate. Not all non-native species are
invasive.
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2 Equations

2.1 Derivation
The equations are based on the Fisher-Kolmogorov equation, defined, in dimensional form (Fisher,
1937, Kolmogorov et al., 1937),

∂u

∂t
= D1

∂2u

∂x2
+ ru(κ− u) (1)

where u is population density, x is space, t is time, D1 is the diffusivity of the population, and r
is the intrinsic replacement rate.

Interpreted physically, this equation states that the change in population density over time
is the sum of the effects of diffusion (spreading out due to random migration), and reproduction
and death. In the final term, the ru portion, being the intrinsic replacement rate multiplied by
the current population density, is the maximum rate at which the population could theoretically
be increasing. This is multiplied by κ − u, which corresponds to the effects of the limits of the
environment. The closer the population density is to the carrying capacity, the smaller this term
becomes, and hence the lower the overall replacement rate. If the population density is greater
than the carrying capacity then the term becomes negative, and the replacement rate becomes
negative.

The extinction vortex arises not directly due to any properties of the environment, but due to
lack of genetic fitness leading to either an increased death rate, or a decreased birth rate, or both;
but, ultimately, a decreased replacement rate. This implies that the replacement rate will also be
a function of f , where f is the mean inbreeding coefficient. The simplest form which encapsulates
the decreased replacement rate due to genetic effects is

r = r0 − I(f − fmin)
where r0 is the (constant) intrinsic replacement rate in the absence of genetic effects, I is the
increased death rate per unit increase in inbreeding coefficient, and fmin is the minimum inbreeding
coefficient. Inbreeding is minimised when the population is large and healthy. In theory, we would
expect that fmin = 0.5.

Substituting the above form of r into the Fisher-Kolmogorov equation (1) gives

∂u

∂t
= D1

∂2u

∂x2
+ u(r0 − I(f − fmin))(κ− u)

However, the mean inbreeding coefficient also varies in space and time, necessitating a similar
equation for the rate of change of f . In the Fisher-Kolmogorov equations, there is a diffusive term
to account for the migration of animals. As genetic fitness is a property of the animals themselves,
the inbreeding coefficient will spread in space just as the animals do. Therefore,

∂f

∂t
= D2

∂2f

∂x2
+ F (u, f)

where F is an unknown function. F must have the following behaviour:

• f is bounded between two constant limits, fmin and fmax.

• At intermediate values, f increases at a rate that is higher the lower the population is.

fmin is defined above. By definition, f cannot increase above 1 (corresponding to complete
homozygosity), and in practice above a certain value death of any individual at that level of
inbreeding is inevitable. This can be estimated by considering the number of lethal equivalents
in the genome; that is, the number of heterozygous genes that would cause death if they were
homozygous. For reference, humans have approximately three lethal equivalents.

The simplest form which encapsulates the above behaviour is:

∂f

∂t
= D2

∂2f

∂x2
+ J(f − fmin)(fmax − f)(κ− u)

where J is a coefficient representing the maximum rate of increase of inbreeding coefficient (or,
equivalently, loss of heterozygosity) due to inbreeding. This maximum occurs when f is halfway
between fmin and fmax, and when u� κ.
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As it stands, the rate of change of the inbreeding coefficient is always greater than or equal to
zero, unless there is a constant influx of new genetic variation introduced via the diffusive term.
This implies that any population that ever goes below the carrying capacity will eventually go
extinct, which is unrealistic; real populations can recover given time. In reality, loss of genetic
variation due to processes such as inbreeding and genetic drift (as well as other evolutionary forces
that reduce genetic variation, such as natural selection) are balanced by a background mutation
rate.

This can be modelled by adding an extra term, such that

∂f

∂t
= D2

∂2f

∂x2
+ J(f − fmin)(fmax − f)(κ− u)− µu(f − fmin)

where µ is the mutation rate per unit population density. The mutation term is zero when f = fmin,
because at this point it is assumed that mutations are just as likely to cause hetetrozygosity as
homozygosity. The rate of change of the mean inbreeding coefficient is taken to be proportional to
the population density because, intuitively, more individuals mutating at once will result in more
mutations, and hence a greater net increase in genetic variation.

2.2 Nondimensionalisation
The full equations, in dimensional terms, have the form

∂u

∂t
= D1

∂2u

∂x2
+ u
(
r0 − I(f − fmin)

)
(κ− u) (2)

∂v

∂t
= D2

∂2v

∂x2
+ J(f − fmin)(fmax − f)(κ− u)− µuf (3)

where u is the population density, f is the mean inbreeding coefficient, D1 and D2 are the dif-
fusivities of the population with respect to spread of population and mean inbreeding coefficient
respectively, r0 is the intrinsic replacement rate of the population (the mean rate of increase of pop-
ulation in the absence of inbreeding or limitations in the environment), I is the additional death
rate per unit increase in mean inbreeding coefficient, κ is the carrying capacity (the maximum
population density that the local environment can support), J is the maximum rate of increase of
the mean inbreeding coefficient due to inbreeding and genetic drift, and µ is the maximum rate at
which mutation can increase genetic variation.

Let the new, nondimensional variables be defined

u = κũ

t =
1

µκ
t̃

x =

(
D1

µκ

)1/2

x̃

The coefficients have dimensions of

[κ] ∼ 1

L

[r0, I, J, µ] ∼
1

LT

[D1, D2] ∼
L2

T

where L is the lengthscale and T is the timescale.
Furthermore, let v be a rescaled form of f such that

v =
f − fmin

fmax − fmin
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noting that the range [fmin, fmax] in f corresponds to the range [0, 1] in v. The inbreeding coef-
ficient is defined as one minus the heterozygosity of the genome, where the heterozygosity is the
ratio between heterozygous and homozygous loci. As a ratio, it is necessarily dimensionless, hence
f and v are also dimensionless and we do not require new nondimensionalised variables for either.

Substituting the nondimensionalised variables, and the new variable v into the population
density equation 2 gives, in full,

κ2µ
∂ũ

∂t̃
= D1κ

µκ

D1

∂2ũ

∂x̃2
+ κũ(r0 − I(fmax − fmin)v)(κ− κu)

which simplifies to

∂ũ

∂t̃
=
∂2ũ

∂x̃2
+
ro
µ
ũ

(
1− I(fmax − fmin)

r0
v

)
(1− ũ)

Similarly, substituting into the inbreeding equation 3 gives, in full

(fmax−fmin)µκ
∂v

∂t̃
= D2(fmax−fmin)

µκ

D1

∂2v

∂x̃2
+J(fmax−fmin)v

(
fmax−fmin−(fmax−fmin)v

)
(κ−κũ)−µκũv

which simplifies to

∂v

∂t̃
=
D2

D1

∂2v

∂x̃2
+
J(fmax − fmin)

µ
v(1− v)(1− ũ)− ũv

Dropping tildes and assigning symbols to the dimensionless groups, the nondimensionalised
system can be expressed as

∂u

∂t
=
∂2u

∂x2
+ αu(1− βv)(1− u) (4)

∂v

∂t
= D

∂2v

∂x2
+ γv(1− v)(1− u)− uv (5)

where

α =
r0
µ

β =
I(fmax − fmin)

r0

D =
D1

D2

γ =
J(fmax − fmin)

µ

For realistic systems, we expect that

• The intrinsic replacement rate is greater than the mutation rate.

• The maximum additional death rate due to inbreeding is greater than the intrinsic replace-
ment rate, to ensure that loss of population is possible.

• The genetic diffusivity is less than or equal to the population diffusivity, as animals cannot
have an effect on the local mean genetic variation before they have physically migrated there.

• The maximum rate of loss of genetic variation due to inbreeding is greater than the maximum
mutation rate.

Mathematically, this implies that α, β, and γ are greater than 1, and that D is greater than or
equal to 1.
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3 Methods

3.1 Numerical Modelling
The equations were solved numerically to confirm the results of the mathematical analysis, and to
investigate features which couldn’t be studied using analysis alone.

The equations were approximated using an explicit method. From elementary calculus we know
that

df

dx
= lim
h→0

f(x+ h)− f(x)
h

This can be approximated as

df

dx
≈ f(x+ δx)− f(x)

δx

where δx is small. Applying this approximation to all derivative terms in the full nondimension-
alised equations 4 and 5, noting that the scale of variation in space δx and in time δt may not be
the same, gives

u(x, t+ δt)− u(x, t)
δt

=
u(x+ δx, t)− 2u(x, t) + u(x− δx, t)

δx2
+ αu(x, t)

(
1− βv(x, t)

)(
1− u(x, t)

)
v(x, t+ δt)− v(x, t)

δt
= D

v(x+ δx, t)− 2v(x, t) + v(x− δx, t)
δx2

+ γv(x, t)
(
1− v(x, t)

)(
1− u(x, t)

)
− u(x, t)v(x, t)

In a numerical simulation, u and v are represented by arrays, with each entry being the value
at a particular point in space or time. The points form a grid with a resolution of δx in the spatial
dimension and δt in the temporal dimension.

For simplicity, let the ith entry in the spatial dimension and jth entry in the temporal dimension
of u and v be denoted ui,j and vi,j respectively. Then the system can be written

ui,j+1 − ui,j
δt

=
ui+1,j − 2ui,j + ui−1,j

δx2
+ αui,j

(
1− βvi,j

)(
1− ui,j

)
vi,j+1 − vi,j

δt
= D

vi+1,j − 2vi,j + vi−1,j
δx2

+ γvi,j
(
1− vi,j

)(
1− ui,j

)
− ui,jvi,j

In general, the initial distributions of u and v will be known, and the aim is to calculate the
distributions at subsequent timesteps. If the system can be rearranged to have quantities evaluated
at timestep j + 1 only on the left hand side, and at timestep j only on the right hand side, then
it is possible to obtain a way of explicitly calculating the distributions at the next timestep using
only information from the current timestep. Rearranging thus gives

ui,j+1 = ui,j +
δt

δx2
(
ui+1,j − 2ui,j + ui−1,j

)
+ δtαui,j

(
1− βvi,j

)(
1− ui,j

)
vi,j+1 = vi,j +

Dδt

δx2
(
vi+1,j − 2vi,j + vi−1,j

)
+ δtγvi,j

(
1− vi,j

)(
1− ui,j

)
− δtui,jvi,j

This is an example of an explicit method. Explicit methods are possibly the simplest technique
for numerically approximating partial differential equations, however they have serious limitations.
In order to converge onto the correct value, it is required that (see, for example, (Cheney and
Kincaid, 2012))

δt ≤ δx2

2

For reasonably small δx, this necessitates an extremely small value of δt. The explicit method is
thus sufficient for small, simple applications, but can quickly become prohibitively computationally
expensive, especially for long timespans.
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3.2 Agent-Based Modelling
An agent-based model was composed using the Python programming language in order to confirm
whether or not the results of the continuous system are also applicable to a large but finite simulated
population. The agents were based on diploid, sexually reproducing organisms, which is what most
species vulnerable to the extinction vortex are.

The agent-based model was composed of discrete subpopulations, each containing a number
of agents representing individual organisms. The agents each had their own “genome” of a given
length, split into two “chromosomes”, composed of binary data (1s or 0s). The inbreeding coefficient
was calculated as one minus the heterozygosity, which was itself calculated as the ratio between
loci at which both chromosomes had opposite values and loci where they had the same value.

At initialisation, the model generated a population of agents distributed in the environment,
each with a genome populated by random data, with an externally specified mean inbreeding
coefficient.

At each subsequent timestep, the agents, with externally specified probabilities, performed any
of the following actions:

• Migration: the agent moved, at random, either up or down one place in the environment,
unless at the upper or lower limit.

• Reproduction: the agent chose another agent in the same subpopulation, if not alone, and
produced a new agent in the same subpopulation with a genome composed of a random
length section of each parent’s genome, with a small probability of mutation swapping the
value at a random locus.

• Death: the agent was removed from the subpopulation. This could occur in one of three
ways:

– At random; there was a background death rate.

– Due to exceeding the carrying capacity; for any new agent entering a subpopulation at
carrying capacity (either due to breeding or migration), an agent in the subpopulation
chosen at random was killed.

– Due to inbreeding; there was an additional death rate that increased proportionally to
the inbreeding coefficient.

There were no other rules provided. Notably, exactly the same rules were applied to the
agent-based model as were in the continuous model: random migration, random reproduction, and
random death, with additional deaths due to competition and inbreeding.

4 Results

4.1 Spatially Homogeneous Systems
If the population is assumed to be spatially homogeneous, then the spatial derivatives (i.e. the
diffusive terms) can be neglected, which simplifies the equations to a system of ordinary differential
equations:

du

dt
= αu(1− u)(1− βv) (6)

dv

dt
= γv(1− v)(1− u)− uv (7)

where u and v are now functions of time only.
To identify equilibrium points, we impose that

du

dt
= 0,

dv

dt
= 0

This gives four equilibrium points:
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(u, v) = (0, 0), (1, 0), (0, 1),

(
γ − γ

β

1 + γ − γ
β

,
1

β

)
These correspond to, respectively: a population that is extinct but genetically healthy, a pop-

ulation that is at carrying capacity and genetically healthy, a population that is extinct and
genetically as unhealthy as possible, and a borderline case with intermediate population density
and inbreeding coefficient.

In order to find the stability and classification of the equilibrium points, we use perturbation
analysis of a generalised equilibrium point given by (u0, v0). For simplicity, we denote

F (u, v) = αu(1− u)(1− βv)
G(u, v) = γv(1− v)(1− u)− uv

Now we introduce a small perturbation about the equilibrium point:

u = u0 + ũ

v = v0 + ṽ

where ũ, ṽ � 1. Substituting this into the full equations, we obtain

dũ

dt
= F (u0 + ũ, v0 + ṽ)

dṽ

dt
= G(u0 + ũ, v0 + ṽ)

Expanding as a Taylor series, and neglecting O(ũ2),

dũ

dt
= F (u0, v0) + ũFu(u0, v0) + ṽFv(u0, v0) + ...

dṽ

dt
= G(u0, v0) + ũGu(u0, v0) + ṽGv(u0, v0) + ...

where Fu is the derivative of F with respect to u. Given that F (u0, v0) = G(u0, v0) = 0 by
definition, this simplifies to

d

dt

(
ũ
ṽ

)
= J

(
ũ
ṽ

)
where J is the Jacobian matrix, defined

J =

(
Fu Fv
Gu Gv

)
with all derivatives evaluated at the equilibrium point (u0, v0).

We now assume that the small perturbations have the form

ũ = Ãeλt, ṽ = B̃eλt

Substituting this into the above system and rearranging gives

(J − λI)
(
Ã

B̃

)
=

(
0
0

)
where I is the identity matrix. For nontrivial solutions, we take the determinant of the matrix
J − λI to be zero.

For this model, the general form of the entries of the Jacobian are
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Fu = α(1− βv0)(1− 2u0)

FV = −αβu0(1− u0)
Gu = −γv0(1− v0)− v0
Gv = γ(1− 2v0)(1− u0)− u0

We now consider the four equilibrium points in turn. At (u0, v0) = (1, 0),(
−α− λ 0

0 −1− λ

)(
Ã

B̃

)
=

(
0
0

)
with eigenvalues of

λ = −α, −1.

Given that α > 1, both eigenvalues are real and negative, which implies that the point is a
stable node. This makes intuitive sense, as we would expect a large population with minimal
inbreeding to be able to recover from small perturbations.

At (u0, v0) = (0, 1), (
−α(1− β)− λ 0

0 −γ − λ

)(
Ã

B̃

)
=

(
0
0

)
with eigenvalues of

λ = −α(β − 1), −γ.

Given that α, β, γ are all greater than 1, both eigenvalues are again real and negative, which
implies that the point is also a stable node. Again this makes intuitive sense, because we would
expect a small perturbation (here equivalent to a small, highly inbred population) to vanish with
time.

At (u0, v0) = (0, 0), (
α− λ 0
0 γ − λ

)(
Ã

B̃

)
=

(
0
0

)
with eigenvalues of

λ = α, γ

Since α and γ are both greater than 1, both eigenvalues are real and positive, which implies that
the point is an unstable node. This makes sense because a population that is small but genetically
optimal can be expected to recover to full health.

At the final point, (u0, v0) =
(

γ− γ
β

1+γ− γ
β
, 1
β

)
, the algebra becomes too cumbersome to transcribe.

Nevertheless we find that one eigenvalue is positive and the other negative, implying that it is a
saddle point. This finding is confirmed by the numerical results presented below.

It is now clear why it was assumed in section 2.2 that the nondimensional groups are greater
than one. Besides the arguments put forward there, letting them be less than or equal to one can
lead to some of the equilibrium points changing classifications, leading to them no longer being
biologically meaningful. For example, letting β be less than one would mean that the point (0, 1)
would become unstable, meaning that the population would be unable to go extinct.

Figure 1 shows the full phase plane for the spatially homogeneous problem, generated numer-
ically. The stable, unstable and saddle points are clearly identifiable, confirming the analytical
results derived above.

This shows that, in the spatially homogeneous case, with perturbation, there are only two long
term behaviours possible: complete recovery (the system goes to (1, 0)), or extinction (the system
goes to (0, 1)). Figure 2 shows the long term result of numerically integrating (6) using Euler’s
method from any point in a grid within the phase plane. Though there is some inaccuracy owing
to the use of Euler’s method, it broadly agrees with what would be expected from the phase plane.
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Figure 1: The phase plane for the spatially homogeneous case. The horizontal axis, v, is the
rescaled mean inbreeding coefficient, while the vertical axis, u, is the population density. Generated
using parameter values α = 1, β = 4, γ = 2.

4.2 Travelling Waves
Waves travelling at constant speed are equivalent to distributions in space and time that are static
in a frame of reference moving at the same speed as the wave. This moving frame of reference can
be imposed by introducing a new coordinate

ζ = x− ct
where c is the (constant) wavespeed. In order to convert the system into the new coordinate
system, we first consider the derivatives in the equations, for a general function w. Using the chain
rule,

∂w

∂t
=
dw

dζ

∂ζ

∂t

= −cdw
dζ

∂w

∂x
=
dw

dζ

∂ζ

∂x

=
dw

dζ

∂2w

∂x2
=

∂

∂x

(
∂w

∂x

)
=
∂ζ

∂x

d

dζ

(
dw

dζ

)
=
d2w

dζ2

Substituting these derivatives into the full, nondimensionalised equations 4 and 5 gives
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Figure 2: A colour map of the phase plane, as in figure 1. Red indicates initial positions from
which the population ultimately recovers; blue indicates initial positions from which the population
ultimately goes extinct. Lightness is proportional to the number of timesteps taken to come within
0.005 of either (1, 0) or (0, 1). Generated using the same parameter values: α = 1, β = 4, γ = 2,
with a timestep for Euler’s method of dt = 0.02.
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−cu′ = u′′ + αu(1− u)(1− βv)
−cv′ = Dv′′ + γv(1− v)(1− u)− uv

where primes denote differentiation with respect to ζ. Introducing new variables p = u′ and q = v′,
this can be rearranged into a dynamical system of first order ordinary differential equations:

u′ = p

v′ = q

p′ = −cp− αu(1− βv)(1− u)

q′ =
1

D

(
− cq − γv(1− v)(1− u)− uv

)
Equilibrium points can be found by imposing that u′ = v′ = p′ = q′ = 0. This gives four

equilibrium points:

(u0, v0, p0, q0) = (0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0),

(
γ − γ

β

1 + γ − γ
β

,
1

β
, 0, 0

)
These are the same as the equilibrium points observed in the spatially homogeneous case in

section 4.1, with the addition of p and q both being zero. Though the equilibrium points may be
the same, the stability and classifications of the equilibrium points can be expected to be different,
both because the system of equations being solved is different, and because there are two extra
dimensions of phase space.

The perturbation analysis outlined in section 4.1 applies equally well to the four dimensional
problem. For simplicity, we denote

F (u, v, p, q) = p

G(u, v, p, q) = q

H(u, v, p, q) = −cp− αu(1− βv)(1− u)

K(u, v, p, q) =
1

D

(
− cq − γv(1− v)(1− u)− uv

)
As before, we now introduce a small perturbation about the equilibrium point:

u = u0 + ũ

v = v0 + ṽ

p = p0 + p̃

q = q0 + q̃

where ũ, ṽ, p̃, q̃ � 1.
Substituting into the equations, expanding as a Taylor series, and neglecting small terms then

leaves

d

dζ


ũ
ṽ
p̃
q̃

 = J


ũ
ṽ
p̃
q̃


where J is the four dimensional Jacobian matrix, with the form

J =


Fu Fv Fp Fq
Gu Gv Gp Gq
Hu Hv Hp Hq

Ku Kv Kp Kq
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with all derivatives evaluated at the equilibrium point (u0, v0, p0, q0).
Now assuming that the small perturbations have the form

ũ = Ãeλζ , ṽ = B̃eλζ , p̃ = C̃eλζ , q̃ = D̃eλζ

and rearranging gives

(J − λI)


Ã

B̃

C̃

D̃

 =


0
0
0
0


or, in full,


−λ 0 1 0
0 −λ 0 1

−α(1− βv0)(1− 2u0) αβu0(1−0) −c− λ 0
γ
Dv0(1− v0) +

1
Dv0 − γ

D (1− 2v0)(1− u0) + 1
Du0 0 − c

D − λ



Ã

B̃

C̃

D̃

 =


0
0
0
0


When calculating the determinant, and finding the roots, the algebra becomes prohibitively

complicated to display in full. Using computational methods, it was found that the eigenvalues
were, at (1, 0, 0, 0),

λ = − c

2D
± 1

2D

√
c2 + 4D, − c

2
± 1

2

√
c2 + 4α

Since α > 0 and D > 0, there are two positive and two negative eigenvalues, and hence this
point is unstable. Similarly, at (0, 1, 0, 0),

λ = − c

2D
± 1

2D

√
c2 + 4Dγ, − c

2
± 1

2

√
c2 + 4α(β − 1)

which, since γ > 0 and β > 1 is also unstable.
At (0, 0, 0, 0),

λ = − c

2D
± 1

2D

√
c2 − 4Dγ, − c

2
± 1

2

√
c2 − 4α

As all eigenvalues have negative real part, this point is stable.
The closed form of the eigenvalues at the remaining stationary point are too cumbersome to

write in full, but we find that this point is unstable.
We cannot allow spirals at u = 0, as this requires the population density to become negative,

which makes no physical sense. On this basis, we require that

c > 2
√
Dγ

c > 2
√
α

This implies that, for physically meaningful travelling wave solutions, the wave has a minimum
speed which is either 2

√
Dγ or 2

√
α. If the latter, the minimum wavespeed is proportional to

√
α,

which is the intrinsic replacement rate relative to the mutation rate. A greater replacement rate
will generally result in a greater rate of increase of population at the leading edge, which intuitively
will result in a faster wavespeed of u.

Otherwise the wave speed is proportional to
√
Dγ. A larger value ofD will mean that population

diffuses faster than the genetic variation, while a larger value of γ will mean that the population
will locally lose genetic variation more easily. A greater value of sqrtDγ will thus intuitively result
in a faster wavespeed of v.

For physically plausible values of α, β, γ,D and c, we find that the point (0, 0, 0, 0) is a stable
node, and the remaining three equilibrium points are unstable.

However, in order to explicitly show that travelling wave solutions exist, we need to show that a
corresponding trajectory plausibly exists in phase space. This trajectory would have the properties
that
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Figure 3: A plausible trajectory corresponding to a population front. Left: the projection of the
trajectory onto the u, v plane. Right: the projection of the trajectory onto the p, q plane.

• The trajectory would start from a healthy equilibrium state; as ζ → −∞, u→ 1 and v → 0.

• The trajectory would end in some state of zero population; as ζ →∞, u→ 0.

• Between these two points, the trajectory would not pass through any states that are not
physically meaningful, for instance where u is negative.

The point (1, 0, 0, 0) plausibly fulfils the first condition; it is unstable, so trajectories starting
there will not stay there. Similarly, the point (0, 0, 0, 0) plausibly fulfils the second condition, as it
is stable. Not only that, but it is the only stable state of the entire system, so we would expect all
trajectories to ultimately end there.

Proving the existence of such a trajectory would be reasonably straightforward for a two-
dimensional phase plane, but for the full four-dimensional phase space it is substantially more
difficult. Instead, figure 3 shows the result of a numerical integration of the problem, performed
using Euler’s method.

In the u, v plane, the trajectory begins from a small perturbation away from the point (1, 0),
and travels downwards to the point (0, 0), where it stays indefinitely. The trajectory does not leave
the unit square. In the p, q plane, it begins from a small perturbation away from (0, 0), travels
down in p, before returning to (0, 0).

Physically, this would constitute a case where, at large negative x, the population is at the
carrying capacity, with minimum inbreeding; at large positive x, the population is at zero, with
minimum inbreeding; and between the two, a travelling wave front moves at speed c towards
positive x, with a small peak of inbreeding.

Though less plausible biologically, another travelling wave solution is the trajectory from
(0, 1, 0, 0) to (0, 0, 0, 0), as shown in figure 4. This is essentially the same case, but with the pop-
ulation density and inbreeding coefficient swapped. That is, a small peak of population travelling
with an inbreeding coefficient front towards positive x.

This is not a situation seen in reality, because it would require a population small enough
to be endangered to be constantly migrating. Unlike a population near carrying capacity, this
population would be unable to recover from any significant losses, and would likely collapse as
soon as it reached the edge of its habitat.

The Fisher-Kolmogorov equation is known to have travelling wave solutions, which travel with
wavespeed c = 2, and which can be found numerically as well (see figure 5).

Similarly, the travelling waves predicted for the full system of equations above can be found
numerically for values of constants where inbreeding is well balanced by mutation (figure 6), but
for values where inbreeding is significantly greater than mutation, the travelling waves come to a
stop (figure 7). As travelling waves with non-constant wavespeed cannot be found by the above
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Figure 4: A plausible trajectory corresponding to an inbreeding front. Left: the projection of the
trajectory onto the u, v plane. Right: the projection of the trajectory onto the p, q plane.

mathematical analysis, further investigation is needed to confirm whether this is real behaviour of
the equations or simply an artefact of the numerical approximation.

4.3 Comparison to Agent-Based Model
The agent based model showed, at least qualitatively, all of the same behaviour as the continuous
model. The (non-rescaled) mean inbreeding coefficient generally stayed close to f = 0.5, apart
from in areas with a population far below the carrying capacity, where it increased.

In spatially homogeneous cases, the population always either reached a stable recovery state or
went entirely extinct, although this was influenced by random variation.

Travelling waves could be observed under appropriate conditions (see figure 8), and appeared
to travel faster with higher diffusivity or replacement rate, and with lower sensitivity to inbreeding.

5 Discussion

5.1 Assumptions
In order for the model to be applicable to real populations, it is important to make clear the
assumptions implicit in the above derivation.

The first and most obvious assumption is that the population density and inbreeding coefficient
can be modelled using a continuous, deterministic system. In reality, this is a stochastic process
acting on discrete agents.

The Fisher-Kolmogorov equation, on which the model is partially based, provides a precedent in
treating relatively large populations of animals as continuous, however the objective of investigating
the extinction vortex necessarily means that it must be applicable to small populations as well.

Even if the assumption of continuity does break down when the population is reduced to the
scale of individuals, however, it does tend towards the correct expected behaviour as the population
decreases, in either space or time, from a larger population.

More specifically, as a population decreases over time, the model correctly predicts that the
population tends towards extinction; and as a population decreases in space, it correctly predicts
that it approaches zero population density.

The assumption of continuity may be less well founded for the inbreeding coefficient. The
problem is that the mean inbreeding coefficient is only well defined where the population is non-
zero. At best, the limit of v as x approaches infinity can be used as a substitute for the value it
approaches at the edge of the physical population. But continuous distributions, which the model
deals with, do not have a well defined edge.
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Figure 5: A numerical integration of the Fisher-Kolmogorov equation. Red is population density,
u. Lines are taken at equal time intervals. The parameters used were r = 1, κ = 1, D = 1. The
integration was performed with lengthscale δx = 0.1 and timescale 0.002.

Figure 6: A numerical integration of the full system of equations, with a relatively high mutation
rate. Red is population density, u, and blue is rescaled mean inbreeding coefficient, v. Lines are
taken at equal time intervals. The parameters used were α = 2, β = 1.2, γ = 1.5, D = 1.
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Figure 7: A numerical integration of the full system of equations, with a relatively low mutation
rate. Red is population density, u, and blue is rescaled mean inbreeding coefficient, v. Lines are
taken at equal time intervals. The parameters used were α = 4, β = 2, γ = 3, D = 1.

All analysis of the model outlined in this document assumes that the carrying capacity is
constant. This is not as unreasonable an assumption as it may seem at first glance. One may point
out that the properties of the environment, such as the amount of food available, can be expected
to fluctuate substantially over time, and will vary relative to the current or recent population
density (high populations will outstrip the environment and leave less food for the next generation).
However, it is important to remember that the carrying capacity is not simply the maximum
population density that the environment can support at that point in time, but rather the maximum
population that the environment can support for an indefinite period of time.

The other, non-constant properties of the environment, are assumed to be in equilibrium at the
carrying capacity, and hence generally not relevant for small fluctuations, but for populations far
from equilibrium it may be necessary to model these explicitly (see section 5.3 for examples).

The carrying capacity may be non-constant, due to long term changes in the environment,
but it is sufficient to assume that the carrying capacity varies on a much longer timescale than
the population density and inbreeding coefficient to justify approximating it as constant. This
technique is known as two-timing, and gives results much more accurate than may be expected,
even for timescales only a few times greater. (Strogatz, 2015)

The model also assumes, however, that the population will generally equilibrate to the carrying
capacity, which is less well founded. Real populations, even those not threatened by significant
changes in the environment, will often fluctuate dramatically without obvious cause. Though this
is not observed in the model, nor in the Fisher-Kolmogorov equation, it is apparent in the logistic
map, defined

un+1 = run(κ− un)

where un is the population density at the discrete timestep (or generation) n, and r and κ are
the intrinsic replacement rate and carrying capacity. For such a simple model, it can display
surprisingly complex behaviour. For low values of r, the population will equilibrate to the carrying
capacity, as expected. For higher values, the population instead equilibrates to a steady, stable
cycle of fluctuating above and below the carrying capacity. For higher values still, the population
does not equilibrate at all, and instead fluctuates around the carrying capacity unpredictably and
chaotically (May et al., 1976).
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Figure 8: A travelling wave in the agent-based model. The horizontal axis is space. The red line
is the population density, u, and the blue line is the mean inbreeding coefficient, f . The model had
a migration rate of 0.7, breeding rate of 0.7, background death rate of 0.2, additional death rate
per unit increase in f of 0.8, and a mutation rate of 0.02 per locus. All rates were probabilities
per agent per timestep. The chromosomes had 100 loci each, and the carrying capacity was 100
for each subpopulation.
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5.2 Applicability to Real Populations
5.2.1 Evidence

The verifiability of the model is greatly limited by the scarcity of high precision data of population
density and genetic variation within endangered or otherwise limited populations. What data sets
of natural populations do exist often have timesteps between measurements of as much as a year,
and typically do not include detailed genetic information or accurate distributions in space.

In the absence of more reliable data, it is argued that the general agreement of the continuous
model with both the results of the agent-based model and the existing theory and literature are
sufficient for the model to be as well confirmed as possible at the present time.

Experimental data may be able to confirm or deny the results of the model. In particular, the
common model organism Drosophila melanogaster satisfies most of the assumptions outlined in
section 5.1, and lends itself well to laboratory experiments.

To investigate the critical value for recovery in the spatially homogeneous case, one could
maintain small populations in enclosed environments, varying the initial population density and
mean inbreeding coefficient, and measuring the long term dynamics of the population over the
course of several generations. The carrying capacity could be held constant by providing a constant
amount of food regardless of the local population.

To investigate travelling waves would require more sophisticated apparatus, but is still possible
in theory. One possibility would be a long, thin enclosed tank of length substantially greater than
the mean distance an individual will migrate over the course of its lifetime. Food would need to
be dispensed throughout the length of the tank in order to maintain a constant carrying capacity.
An initial population would then be released at one end of the tank, and it would be seen if, over
the course of multiple generations, a travelling wave forms, and, if so, how fast it would travel.

5.2.2 Calculability

All variables and parameters in the model are at least theoretically measurable or calculable. The
population density can be calculated by separating the environment into small sub-environments,
measuring the census population in each sub-environment, and dividing by the area of the sub-
environment. The census population can be estimated by, for instance, the mark-and-recapture
method.

The mean inbreeding coefficient can be calculated as one minus the heterozygosity, and the
heterozygosity can be measured by sequencing at least part of the genomes of several individuals in
each sub-environment (as above). Thanks to next generation sequencing methods, even sequencing
several hundred genomes is no longer prohibitively expensive.

Both above methods are vulnerable to the modifiable areal unit problem, meaning that the
calculated quantity can vary dramatically depending on the size, shape and position of the sub-
environments. To minimise the effects of this, it is advisable to use constant size, constant shape
sub-environments, for instance a grid.

The carrying capacity can be observed directly if there are reasonably long term records of the
population density of a healthy population of the species, in which case it is simply what value the
population density equilibrates to over time. If such records are not available, it can be estimated
based on the amount of food and space available in the environment and the amount used per
individual. This is less reliable, and requires knowledge of what the minimum limiting factor is to
population growth.

Diffusivity can be estimated based on how far individuals tend to migrate over the course of
their lifetimes. This can be measured using, for instance, tracking collars.

The intrinsic replacement rate, r0, can be estimated by monitoring the birth and death rates
of genetically healthy individuals in isolation. The actual replacement rate, r, can be estimated by
monitoring the same things in the actual environment.

If all of the above are known, along with the rate of change of the population density, then, in
a region without a strong gradient of population density in space,

∂u

∂t
= ru(κ− u)

= u(r0 − Iv)(κ− u)

21



so the coefficient I can be deduced. This would be very difficult to measure otherwise, but may
be estimable from the number of lethal equivalents in the genome.

5.2.3 Consequences for Endangered Species

For conserving a population of a given endangered species, the aims are

• To identify whether or not the population will recover without intervention.

• If the population is outside the extinction vortex, to maximise its resilience to future stresses.

• If the population is within the extinction vortex, to intervene so as to allow it to recover.

• To do the above in the most time and resource efficient way possible.

The first thing that becomes apparent is that the environment, and the distribution of the
population within the environment, are extremely important. Endangered species often have highly
fragmented habitats, with subpopulations effectively isolated from one another.

Fully, or almost fully isolated subpopulations are more prone to extinction relative to well
connected subpopulations because losses in population density cannot be offset by migration.
Hence, removing or minimising barriers in the environment (e.g. providing bridges or fords across
rivers) could go a long way towards improving the resilience of the population as a whole. Similarly,
increasing the diffusivity of the environment (e.g. clearing small paths through the environment)
will enable faster migration to counteract localised loss of population density.

The (dimensional) constants µ, I and J are intrinsic properties of the species and cannot be
changed. By contrast, the intrinsic replacement rate, r, and the carrying capacity κ are mutable
properties of the environment.

This ties in with the r/K selection theory (Pianka, 1970), wherein organisms can be classified
as r-type or K-type. r-type organisms are generally opportunistic, being quick to recover and to
exploit new environments, whereas K-type organisms are generally more conservative, relying on
having long-term dominance of the environment through larger populations. These correspond to
maximising the intrinsic replacement rate r, or the carrying capacity κ, respectively.

The theory has fallen out of favour in recent times, as it has become apparent that most species
do not fit neatly into either category, or even necessarily on a spectrum between the two extremes.
However, the concepts can still be of use: for small, endangered populations, r-type behaviour is
optimal for quickly recovering, whereas for large, stable populations, K-type behaviour is optimal
for maximising resilience.

The intrinsic replacement rate can be maximised by maximising the breeding rate and min-
imising the death rate. Physically, this could include

• Breeding in captivity and releasing offspring back into the environment.

• Reducing predation, by excluding predators from the environment or, in extreme cases,
culling.

• Making reproduction easier, for instance by providing nest boxes.

By contrast, maximising the carrying capacity would constitute maximising whatever is the
limiting factor in population growth. Usually, this will mean promoting the populations of food
plants or prey, as appropriate, but some species may be limited by the availability of territory, or
the climate.

Notably, the r-type strategies are generally resource intensive and temporary measures, whereas
the K-type strategies are generally easier and more permanent. This highlights the fact that early
intervention and a preventative approach are far more efficient and effective than waiting for species
to become critically endangered before intervening.

It is important also to remember that r-type strategies will do nothing to help a population
at or close to carrying capacity, as the limiting factor is a lack of resources, and similarly K-type
strategies will do nothing to help an endangered population, as there are plenty of resources to go
around.

The model does highlight some non-obvious strategies for conserving endangered species. For
example, if the population is highly spread out in many subpopulations, each with low population
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density, it may be best to actively concentrate the population into a smaller area. At first glance,
this may seem absurd - if the population is already low, then forcing them together so that they
have to compete for resources as well is only going to reduce the population further - but the
genetic benefits of having a higher population density are potentially great enough to overcome
this.

Another strategy is to introduce a few breeding individuals with a highly different genome into
an inbred population to provide a boost to the local mean genetic variation. This is known as ge-
netic rescue, and has been successful in enabling long term recovery of, for instance, a Scandinavian
wolf population (Åkesson et al., 2016).

One important thing to note from the spatially homogeneous results, as shown in figure 1, is
that the rate of change of population density is not necessarily a good indication of the long term
survival of the population. In the top-right of the phase plane, the population density is decreasing
precipitously, but still ultimately recovers; whereas, towards the bottom left, the population density
may be increasing but the population is still ultimately headed for extinction.

This result is especially important because the IUCN red list (IUCN, 2001), which is usually
used to classify how endangered a given species is, has in its criteria a strong focus on the rate of
change of population, but has no mention of inbreeding or genetic effects whatsoever. Some criteria
are vague enough that an argument could be put forward of “inferred or suspected population size
reduction” based on genetic effects, however.

Given how strict many of the other criteria are, this presents a serious risk of misclassification
of endangered species, which could carry severe consequences.

5.2.4 Consequences for Invasive Species

For eradicating a population of a given invasive species, the aims are

• To prevent the population from spreading into new environments.

• To drive the current population extinct.

• To do the above in the most time and resource efficient way possible.

This can be seen as the reverse of the endangered species case, and hence in many ways the
appropriate strategies are the reverse of the above.

Preventing spread can be accomplished by reducing the replacement rate, reducing the diffusiv-
ity or introducing barriers to migration, and, in particular, by having a highly inbred population
near the leading edge. Care must be taken with measures that affect the environment itself, as
these may also negatively affect native species, which may themselves be endangered due to compe-
tition with the invasive species. The introduction of highly inbred subpopulations near the leading
edge is therefore an especially useful strategy, as it does not directly affect other species nearby.

Eradicating well established populations is likely to be difficult, but the extinction vortex offers
a good target and a means of preventing recovery. The goal is then to minimise population density
and to maximise the mean inbreeding coefficient.

Unfortunately, increasing inbreeding simply by releasing inbred individuals, as a reverse of
genetic rescue, is unlikely to be effective. Unless the inbred individuals form a majority, they
will simply be outcompeted by genetically healthy individuals within a few generations. Rather,
inbreeding will have to be increased simply by maintaining a low population density.

For a healthy population close to carrying capacity, a three step approach is likely to be most
effective:

• Firstly, minimise the diffusivity and carrying capacity to increase the vulnerability of the
population. Where possible, this should be done with the minimum collateral harm to native
species.

• Secondly, the population density should be reduced, either by culling, or by waiting for a
natural population drop due to environmental factors.

• Finally, when the population is at its most vulnerable, the replacement rate should be min-
imised and the population density kept low until the extinction vortex takes hold.
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The first step is optional, but potentially useful. The last step is especially difficult, because
even a single subpopulation recovering can result in the recolonisation of the entire environment.
If it is possible to fully divide the environment into discrete pieces, with no migration between
them, then focusing on one piece at a time is likely to be easiest.

The naive approach to eradicating invasive species (namely, just killing as many as possible
by any means) is typically ineffective, because cullings and intentionally introduced diseases will
generally not kill enough, or maintain a population loss for long enough, for the population to fall
into the extinction vortex.

Given how difficult and expensive the above strategies are likely to be, by far the most efficient
way to counteract invasive species is simply to prevent them from invading in the first place. Hence,
preventative measures should be a high priority.

5.3 Future Research
The model works fairly well as a closed system, and appears to contain all important evolutionary
forces for modelling the extinction vortex. However, as outlined in section 5.1, there are many
situations in which it is inapplicable. Far from being limitations, these offer interesting possible
avenues for future research.

5.3.1 Generation Time

The generation time of a species is the average time between an individual being born and it
reaching sexual maturity. The model implicitly assumes that the generation time is zero; that is,
an increase in population density due to births contributes instantaneously to more births.

Incorporating this would require explicitly separating the replacement rate into separate birth
and death rates, and having the increase in population due to births be proportional not to the
total population density, but to the population density of sexually mature individuals. There are
several approaches that could be used to model this.

Perhaps the most obvious would be to have separate mature and immature subpopulations.
The limitation of population increase due to approaching the carrying capacity, and the diffusion,
would then be proportional to the sum of mature and immature subpopulations, but the rate of
increase of population would only be proportional to the mature subpopulation.

A simple alternative would be to have the population increase due to births be proportional not
to the current population density but to the population density some amount of time ago. This
assumes that the proportion of the population that is sexually mature is approximately constant.
Though less accurate, this captures the fundamental behaviour without requiring the addition of
another variable, however it would make the analysis substantially more challenging.

An even more radical simplification would be to change the model from being a set of differential
equations to a set of discrete mappings; that is, to discretise the model in time, not entirely unlike
the approximation taken in section 3.1. This would correspond to having separate, but potentially
overlapping, generations; a common feature of real animals. The equations would then have a form
along the lines of

un+1 =
∂2un
∂x2

+ (rbun−G − (rd + Iv)un)(1− un)

vn+1 =
∂2vn
∂x2

+ γvn−G(1− vn−G)(1− un)− unvn−G

where un is the population density at the nth timestep, G is the generation time in timesteps, rb
is the intrinsic birth rate, and rd is the intrinsic death rate. Note that all terms involving breeding
are proportional to the population density or inbreeding coefficient at the timestep at which the
currently breeding individuals were born, rather than the current timestep.

Any of the above approximations has the potential to dramatically alter the dynamics of the
system. The first approximation introduces a third dimension in phase space; the second makes
the equations nonautonomous (explicitly depending on time), and the third would make phase
space discontinuous. These introduce the possibility of chaotic solutions, which are precluded by
the equations in their current form, due to the fact that in two dimensions the trajectories in phase
space cannot loop back on themselves and must instead approach some orderly behaviour.
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This would serve to make the behaviour of the system much less predictable, but in many ways
more realistic. For example, there would be the possibility of serious population booms (jumping
above the carrying capacity) and crashes (potentially landing it into the extinction vortex with
little warning).

Given the relative mathematical ease of discrete mappings, and the potential gains in terms
of interesting behaviour of the system, this represents an especially promising modification to the
system.

5.3.2 Heterogeneous Environments

The analysis put forward in this document has been limited to an environment with constant,
spatially homogeneous parameters; the carrying capacity, diffusivity, and intrinsic replacement
rate are all the same across the entire environment. In reality, it is likely that some parts of the
environment will be more hospitable than others, and all species have limits to what habitats they
can tolerate, so all will have certain environments which they cannot colonise.

Shigesada et al. (1986) analysed the Fisher-Kolmogorov equation in a periodic, heterogeneous
environment, with the diffusivity and replacement rate varying in space. They found that travelling
waves could pass even through regions with negative replacement rate, provided that it is above a
given critical value.

A similar approach taken towards this model would be valuable in investigating the limits in
which colonisation is still possible, and how genetic effects are involved.

5.3.3 Natural Selection

A major evolutionary force that is notably absent from the model is natural selection. Though
this generally operates on a longer timespan than is considered for the extinction vortex, it could
become relevant for modelling long-term recovery, or in the case of extremely strong selective
pressures.

Natural selection acts to decrease the genetic variation of the population, and hence increase the
inbreeding coefficient, by purging the population of deleterious alleles - yet the purged population
would be healthier and hence would not have the decreased replacement rate characteristic of the
extinction vortex.

The inclusion of natural selection in the model would almost certainly necessitate the addition
of a new variable to measure fitness. Qualitatively, the expected dynamics of the system would be
that

• The population density would generally increase up to the carrying capacity, as in the current
model. The replacement rate would be decreased by low fitness, rather than directly by a
high inbreeding coefficient.

• The inbreeding coefficient would increase at low populations (due to inbreeding) and at high
rate of change of fitness (due to deleterious alleles being purged) and decrease with mutation.

• The fitness would generally increase up to a constant maximum fitness. It would be decreased
by low populations, due to the effects of inbreeding and genetic drift.

Intuitively, one would expect this system to have broadly similar dynamics to the basic model,
with stable states corresponding to a healthy population (maximum population density, minimum
inbreeding coefficient, maximum fitness) and to extinction (zero population density, maximum
inbreeding coefficient, minimum fitness). Without an explicit form of the equations it is impossible
to give any more detailed analysis.

5.3.4 Predation

Predation is already included in the model in a very crude form as part of the replacement rate. This
assumes the only effect of predation is an additional constant death rate. This may be a reasonable
approximation if the predator population is generally constant (for example, a generalist predator
that has many other sources of food), but in the case of a predator that feeds only on the species
studied, the predator population - and hence the decrease in replacement rate - will vary with the
prey population.
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The above is equally applicable to populations of parasites. If the effects of the other population
are inverted (i.e. the other population increases the replacement rate, rather than decreasing it)
then it can be used to model the effects of a mutualistic relationship with another species.

A synthesis of the Fisher-Kolmogorov equation and Lotka-Volterra equations was studied by
Cruywagen et al. (1996) in the context of colonisation by genetically modified organisms, including
the effects of spatially heterogeneous environments. However, this analysis assumed a constant
replacement rate, and considered the two populations to be in direct competition, rather than
predating on one another.

Modifications of the equations of this sort may be especially valuable in studying highly inter-
dependent species that are both endangered.

5.3.5 Disease

Besides simply competing for resources, another way in which high population density can lower
the replacement rate and hence limit population growth is through the spread of disease. In the
model, population growth is linear with respect to competition for resources; the κ − u term can
be loosely interpreted as the amount of resources available to the population. The rate of change
of population density is linearly proportional to this.

By contrast, limits to population growth imposed by disease will be extremely nonlinear, and
not straightforward to model. One possibility would be to use a variation of the SIR equations.
These separate the population into three subpopulations: susceptible, infected, and recovered. In
their original formulation, these equations assume a constant census population, and neglect any
spatial heterogeneity. The assumption of constant population also implies that the disease is never
fatal.

The system of equations would likely be similar, with the additional condition that

u = S + I +R

where S, I and R are the population densities of the susceptible, infected and recovered subpopula-
tions respectively. The u equation would also include an additional death rate proportional to the
infected population density I. There would be three equations required to describe the changes in
S, I and R with respect to time, noting that offspring will be born susceptible. The exact form of
these hypothetical equations is beyond the scope of this document, and the resultant system would
be unlikely to produce many precise analytic results without the use of substantial simplifications.

Even as a purely computational model, the results could be interesting, and the dynamics of the
equations provide some interesting possibilities. One would expect a general cycle of epidemic and
recovery, with the possibility of extinction if an especially severe epidemic reduces the population
to below the brink of the extinction vortex.

Furthermore, the known existence of travelling waves in population, inbreeding, and infection
raises interesting prospects of how the different waves would interact, which has serious conse-
quences for the proposed use of deliberately introduced diseases to control invasive species popu-
lations. If the goal is to prevent spread, then unless the infection wavespeed is greater than the
population wavespeed, it will fail to prevent colonisation. If the goal is complete eradication, then
unless the population density is zero in the wake of the infection wave, it will likely be followed by
a resistant population recolonisation wave.

5.3.6 Migration

The model assumes that migration is entirely random, with no preferred direction. In reality, many
species migrate with some preferred direction. If the entire population is moving in one direction at
a constant speed, without any other migration, then this is equivalent to being static in a moving
frame of reference and simplifies to the spatially homogeneous system considered in section 4.1.

For aquatic organisms, migration is often dominated by ocean currents. If the velocity field of
the body of water is known, then this can be approximated by replacing the time derivatives in
the equations with material derivatives, defined for some general function F ,

DF

Dt
=
∂F

∂t
+ u.∇F
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where u is the (vector) velocity field, not to be confused with u, which is the (scalar) population
density. In comparison to the effects of the ocean currents, the diffusive terms can probably be
neglected, giving a system of equations of the form

Du

Dt
= αu(1− u)(1− βv)

Dv

Dt
= γv(1− v)(1− u)− uv

The effects of this change depend on the properties of the velocity field. In areas of divergence
(where the flow is spreading out, or accelerating), if present, there will be a net loss of population
density, making the local population, and potentially also the population downstream, more prone
to extinction and less able to recover from population losses. The opposite would be true in areas
of convergence (where the flow is coming together or decelerating).

Provided that the velocity field is non-zero, there would probably still be travelling waves, but
their wavespeed would likely depend on the local velocity field, and they would only be able to
spread in the same direction as the velocity field itself. Furthermore, there would be the possibility
of waves of extinction, as well as of colonisation.

5.3.7 Turing Instability

The model constitutes a reaction-diffusion system. Reaction-diffusion systems have the general
form

∂u

∂t
= ∇2u+ F (u, v)

∂v

∂t
= D∇2v +G(u, v)

where u and v are concentrations or densities of some sort, D is the differential diffusivity (the
ratio between the diffusivities of u and of v), and F and G are known functions.

For D 6= 1, it is possible for the effects of the diffusion and reaction terms to balance in such a
way that heterogeneous distributions in space of u and v can be stable in time. This is known as
Turing instability.

Turing instability is especially notable because systems featuring diffusion typically act to
smooth out variation and ultimately result in spatially homogeneous distributions. For example,
the long-term behaviour of the Fisher-Kolmogorov equation, for non-zero initial conditions, is
always u = 1, corresponding to the population uniformly staying at carrying capacity.

For a general reaction-diffusion system to exhibit Turing instability (Murray, 2001):

1. There must exist an equilibrium point, (u0, v0) such that F (u0, v0) = G(u0, v0) = 0.

2. The equilibrium point must be stable if u and v are spatially homogeneous.

3. The equilibrium point must be unstable if u and v are spatially heterogeneous.

4. The differential diffusivity, D, must not be equal to one.

It was shown in section 4.1 that the spatially homogeneous case has two stable equilibrium
points, (1, 0) and (0, 1), and in section 4.2 that these points are both unstable in the spatially
heterogeneous case with respect to travelling waves. Further analysis is needed to prove definitively
whether or not the model can display Turing instability, but preliminarily it is certainly possible.

If the model were to show Turing instability, this would imply the possibility of spatial hetero-
geneity arising spontaneously, including unhealthy or uninhabited patches within the environment
that may be steady over time. If this is true, then it could go some way towards explaining the
way in which real populations tend to coalesce into discrete subpopulations separated by relatively
uninhabited regions. What is especially notable is that this does not even require any heterogeneity
in the environment.
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6 Conclusion
The model presented in this document has a good backing in biological theory. In terms of physical
processes, it includes all of, and only, birth, death, migration, inbreeding, and mutation. The terms
of the equations intuitively correspond to real processes. The coefficients can be written in terms
of meaningful biological constants.

In the absence of spatial effects, the model predicts that the population will tend towards
either recovery or extinction. There is a clearly identifiable boundary to the extinction vortex.
Given accurate measurements of the physical quantities involved, the model can make predictions
of whether the population will recover or not without intervention.

With spatial effects, the model predicts travelling waves corresponding to colonisation events
to occur under some circumstances. These are characterised by a smooth front in population
density, with a small peak of greater than equilibrium inbreeding coefficient at the leading edge.
The wavespeed can be predicted based on physical parameters.

The results are generally confirmed by an agent-based model, operating under exactly the same
set of physical processes.

Both the spatially homogeneous and spatially heterogeneous cases offer useful, meaningful, and
detailed predictions about conservation of endangered species and eradication of invasive species,
including some which run counter to the prevailing techniques and classifications currently used.

The applicability to real populations is extremely difficult to judge. Qualitatively, the behaviour
appears to be generally accurate, but the quantitative accuracy cannot be judged due to insufficient
data. If confirmed, many promising modifications to the model are available that could improve
its accuracy, or extend it to cover situations specific to certain species.

In conclusion, the model presented here is successful in its goal of modelling the extinction
vortex, as well as many related phenomena in population dynamics. Though usable as it is, it
warrants further research to achieve its true potential.
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